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E. Turan Onat
1925-2000

The mechanics community lost one of its distin- technical interests
guished members with the passing away of E. Turanin structures, his ar
Onat in New Haven, Connecticut, on July 4, 2000 duetistic and aesthetic § §
to an inoperable cancer. appreciation of ar-

Onat was a native of Turkey and came from a promi- chitecture led Onat
nent family. His father was a general in the judicial to develop highly
branch of the army, and his brother and sister live in popular structures
Istanbul. He received the degrees of Dipl. Ing. in 1948 and structural me
and the Doctor of Science in 1951 from the Istanbul chanics courses. Hés.
Technical University. As part of his doctoral studies, he was especially fond
served as a Research Fellow at the Paris Academy i®f his collection of
1950. model  structures; -

He came to the U.S. in 1951 as a Post-Doctoral Fel-designed and as
low at Brown University. There he engaged in the re- sembled by stu-
search on plasticity that was in full development at dents in  these
Brown during the 1950’s. His research in that period is COUrses.
characterized by the rigorous treatment of problems Two studies of
that clarify and illustrate the underlying principles of plastic necking
plasticity theory. These features are exemplified in(with Pragey and buckling(with G. R. Cowpey were
work with R. T. Shield on combined bending and twist- particularly important applications of plastic stability
ing of tubes in the plastic range; with W. Prager on and continuing limit-load behavior. The necking solu-
limit analysis of arches, on plane strain necking in ten- tion with Prager featured a pair of centrally intersecting
sion, and collapse and limit load analysis of various slip-lines separating four rigid blocks in relative mo-
structures; and with D. C. Drucker on the stability of tion. A physical realization of the idealization can be
inelastic systems. found in tension of single crystals oriented for symmet-

In 1954, Onat returned to Turkey for his compulsory ric double slip. R. J. Asaro once showed Onat an alu-
military duty and served as a lieutenant attached to theminum alloy crystal that had been deformed in his
scientific advisory board of the Turkish general staff. manner, and the crystal contained a small-diameter
He came back to Brown University in 1957 as an As- hole where the shear-bands crossed. Delighted with the
sociate Professor of Engineering and was promoted tQorrespondence of the crystal with his solution, Onat

full Professor in 1960. He was awarded a Guggenheimnsyccessfullyasked Asaro to give him the specimen
Fellowship for the academic year 1963—-1964, durlngSO he could make a tie-clasp of it.

which he served as Visiting Professor at Cambridge
University and at the Istanbul Technical University.

In 1965, he joined the engineering faculty of Yale
University, where he remained. At Yale, he partici-
pated fully in the intellectual, artistic, and social life of
the university. He developed teaching and research col
laborations with Yale colleagues in the departments of
geology, mathematics, and the medical school. He wa
a Fellow of Ezra Stiles College at Yale from 1965 to his ri ; ;

is rigorous treatment of the role of internal state vari-

1990. Together with his wife, Etta, who taught in the ﬁlbles in constitutive theories. During the mid 1960s, he

English Department and served as an Associate Dea . .
of Humanities in Yale’s Graduate School, he served asadvocated the now nearly universally adopted constitu-

interim resident Master of Ezra Stiles College in 1990, tive_ formal_ism_bgseq on the evoluti_on of inte_rnal state
and later, from 1990-1995, as Master of Calhoun Col-Variables, In d|st|ncF|or) to a competing hgredltary inte-
lege. In these roles, Turan and Etta looked after thedral equation constitutive formqllsm inherited from in-
personal needs of several hundred undergraduates ifar wscoelastlcny. He emphasized that the more non-
the residential college. They were frequently in atten- in€ar the behavior, the more ternikernels were
dance at the numerous student musical and theatricdieduired in the hereditary integral representation, while
performances at Yale, and at gallery exhibitions. He Systems (_)f flrst-orQer nonlinear differential equations
was loved by the students, and during one of my visits,"éPresenting evolution of state parameters offered great
we were serenaded by a group of young lady studentdlexibility within a unifying framework. His work sub-
at the university restaurant. sequently focused on unified constitutive equations for
Onat had an abiding interest in structures and struccreep and plasticity which essentially depend on vari-
tural mechanics. Research at Brown dealt with critical 2bles whose current values encompass all previous
aspects of the plastic behavior of beam, frame, archloading histories. Particular internal state variables
plate, shell, and membrane structures, including fundalsed in such equations are intended to represent the
mentals of plastic stabilitywith D. C. Druckey, the  various hardening effects, and continuum damage
influence of large displacements and resulting geom-which can lead to tertiary creep. His studies on the
etry change on continuing fully plastic deformation identification and properties of those variables have
(with R. M. Haythornthwaitg and effects of coupled served to guide the formulation of appropriate consti-
axial and shear loading on bending respotwith W. tutive theories for elastic-viscoplastic media.
Prager; R. T. Shield R. H. Lance collaborated with Onat’s later work was directed to developing internal
him in plastic analysis of conical shells. Along with his variable approaches to large deformation viscoplastic-

In the early 1960s, Onat also investigated plastic
wave propagation in membranes due to transverse im-
pact, and the creep of metals subjected to incremental
changes in loading. He was also concerned with funda-
mental issues in linear viscoelasticity, such as unique-
ness, and published papers with S. Breuer on the sub-
ject.

One of the major scientific contributions of Onat was
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ity, and on approaches based on group theory for thevhere he received a special honor in 1999, Ruhr-
representation of tensorial symmetries present in theBochum University in Germany, Tianjin University in
internal state variables. Major collaborators in these en-China, and the University of Rio Grande do Sul in
deavors included F. A. Leckiécreep damage J. P.  Porto Alegre, Brazil. He delivered invited lectures in
Boehler(elastic symmetrigsE. H. Lee(large deforma-  |ndia, Israel, Italy, Poland, Spain, and Switzerland. He
tion plasticity, and B. L. Adams(representation of \on the Senior Scientist Award of the Alexander von
polycrystal microstructupe _ Humbolt Foundation in 1989. He was a member of
Onat was much appreciated by the mechanics comagME, the American Mathematical Society, the Soci-
munity for his special personal qualities, as well as for ety for Natural Philosophy, Sigma Xi, and the Ameri-

his scientific influence. His charming personality and -5, Academy of Mechanics, of which he was elected
gracious manner endeared him to his colleagues angq|ow in 1980. '

associates, some of whom became close friends. He 505 final months were difficult, both for him and
was a}‘n 0utd99rsman {:md, in Prowderjce, shared a S“""lfor those near him, but he retained his smile, his good
boat(*Tresca") with Dick Shield to sail on Narragan- humor, and his love of life and the life of the mind. He
sett Bay, with myself as an occasional passenger. Hi§NiII be,missed '
Boston Whaler helped him catch many bluefish in )
Long Island Sound. At Yale, Onat obtained his pilot's
license for a light plane, and became a proficient and
serious pilot. He enjoyed drawing and was almost
never without his sketchbook. Other avocations in-
cluded gardening and long walks in the woods close to

He is survived by his wife, Etta Onat, of Wood-
bridge, Connecticut, his son, Yasar Onat, of New Ha-
ven; his daughter-in-law, Wendy Natter and his grand-
daughter, Rebecca Onat, of Guilford, Connecticut, his
brother, Dogan Onat, and his sister, Meral Aras, both

his home in Woodbridge, near New Haven. of Istanbul.

As part of his scholarly and cultural interests, Onat
traveled to a number of places and served as Visiting Sol R. Bodner
Professor in Cambridge and Oxford Universities, and Technion-Israel Institute of Technology, Haifa
worked with collaborators at the National Polytechnic with the collaboration of
Institute of Grenoble, the University of Illinois at David Parks
Urbana-Champaign, the Istanbul Technical University MIT, Cambridge, Massachusetts
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Elastic Fields in Double
Inhomogeneity by the Equivalent
Inclusion Method

Consider a double-inhomogeneity system whose microstructural configuration is com-

H. M. ShOdla posed of an ellipsoidal inhomogeneity of arbitrary elastic constants, size, and orientation
A‘SSOC-. Mem. ASME, encapsulated in another ellipsoidal inhomogeneity, which in turn is surrounded by an
Shodja@sina.sharif.ac.ir infinite medium. Each of these three constituents in general possesses elastic constants
. different from one another. The double-inhomogeneity system under consideration is sub-
A. S. Sarvestani jected to far-field strain (stress). Using the equivalent inclusion method (EIM), the double
S inhomogeneity is replaced by an equivalent double-inclusion (EDI) problem with proper
Department of Givil Engineering, polynomial eigenstrains. The double inclusion is subsequently broken down to single-
Sharif University of Technology, inclusion problems by means of superposition. The present theory is the first to obtain the
Tehran, Iran actual distribution rather than the averages of the field quantities over the double inho-

mogeneity using Eshelby’s EIM. The present method is precise and is valid for thin as

well as thick layers of coatings, and accommodates eccentric heterogeneity of arbitrary

size and orientation. To establish the accuracy and robustness of the present method and
for the sake of comparison, results on some of the previously reported problems, which

are special cases encompassed by the present theory, will be re-examined. The formula-
tions are easily extended to treat multi-inhomogeneity cases, where an inhomogeneity is
surrounded by many layers of coatings. Employing an averaging scheme to the present
theory, the average consistency conditions reported by Hori and Nemat-Nasser for the

evaluation of average strains and stresses are recovef&Dl: 10.1115/1.1346680

1 Introduction surrounds an ellipsoidal inclusid® with uniform eigenstraire;; ,
Often, during the processing of composites due to chemidden the strairg;; is also uniform inQ and is expressed by
interactions, an undesirable phase called interphase forms between €i=Sinel, xeQ, 1)

the fiber and the matrix. In other situations, coating technology is

employed to reduce the large residual tensile stresses betweenvihereS;jy, is the Eshelby’s tensor which is uniform,

fiber and the matrix, and consequently to prevent matrix cracking

in cool-down processes. Al_so, coating is u_sed to improve electri- Siikl=f T (x—x)dx’, (2a)
cal conductivity of composites, or to provide a protective layer

against aggressive corrosive agents. Existence of high stress con-

centration just outside a coated/uncoated fiber is a well-known Fijk,(x—x’)=—%Cmnm[Gimynj(x—x’)+Gjmyni(x—x’)],
phenomenon. The overall behavior of composite materials is (2b)

greatly altered by their microconstituents such as interface layer N . L

as well as geometry and distribution of phases. It should be e ﬁjere’Gij(x—_x ) is the fundamental solution satisfying the
phasized that even though coatings are usually very thin, they p {/een s functions problem
an important role in controlling the failure mechanisms and frac- Cijit Gipj (X=X )+ 8,,8(x—x') =0, 3)

ture toughness of a material. '

In the present study inclusions and inhomogeneities are diffavhich is associated with the equilibrium equatiodx—x’) is
entiated as follows: An inclusion is a finite domain with eigenDirac’s delta function ands, is the Kronecker delta. Then he
strain € whose elastic moduli are the same as those of its s¥tended his treatment to the case of an ellipsoidal inhomogeneity
rounding matrix, whereas an inhomogeneity is a finite domalfly réducing it to an inclusion problem with a proper choice of
whose elastic moduli differ from those of its surrounding matrix€igenstrains. These eigenstrains and consequently the stress and
The problems of single and multi-inhomogeneity of arbitrary elagirain fields inside the inhomogeneity are uniform if the far-field
tic constants surrounded by a matrix of different elastic properti@gPlied stresgstrain is uniform. This treatment, which is known
have been addressed by several investigators. A brief summan@gf the equivalent inclusion method(EIM), is valid only for a

some relevant theoretical treatments on the subject are preserfiggle inhomogeneity. If the body contains two or more inhomo-
in this section. A more complete and fairly updated review igeneities which are interacting, then the method must be modified.

given by Mura et al[1]. One of the well-known and fundamentaiMoschovidis and Mur&s] have extended EIM to the case of two
theories is due to Eshelby[@—4] for a single-ellipsoidal inclu- interacting ellipsoidal inhomogeneities that are nonintersecting

sion. Eshelby first showed that when an isotropic infinite domaff"d occupy different points in space. ) ) )
To date, unlike single-inclusion and single-inhomogeneity

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF problems WhICh have been StUQqu eXtenSIVely’ not muc.h a_lttentlpn
MECHANICAL ENGINEERS for publication in the ASME GURNAL OF AppLED N@S been given to the determination of the local elastic fields in
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Octthe case of the double-inhomogeneity problem. This problem oc-
7, 1999;hfir‘|i|i rt;evisg)dn, Junz 14,hZOOOd. ASSOCiaer Editor: D. Kouriﬁ. Dliscussion on t@ygs when a |ayer of different elastic properties is added between
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departme ; ; ; ; ;

Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wi f I.nhomernelty and its Surro.unc.img matrlx' In gener"?‘l' for such
be accepted until four months after final publication of the paper itself in the ASM& situation the stress and strain fields inside the coating and the
JOURNAL OF APPLIED MECHANICS. core inhomogeneity will no longer be uniform, even if the far-
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field loading is uniform; see, for example, Chen et[é]. Conse- and() have ellipsoidal shapes and arbitrary elastic properties, ori-
quently, it may lead one to believe that Eshelby’s method woukhtations, positions, and aspect ratios, as depicted in Fig. 1. Note
not be applicable to such problems. As a result, researchers hthet'V and() may be either isotropic or anisotropic materials. The
employed approximations and other complicated approachefastic moduli of the cor€, annulus¥?=3 -0, and matrix®—%,
Some of these methods are given by Walppdl¢ Mikata and are denoted bg!, C2, andC, respectively. The medium is under
Taya[8], and Benveniste et dl9]. It is interesting to note that for yniform far-field stressaﬂ (strain,eﬂ) so that

a double-inhomogeneity system under uniform far-field loading, 0 0

there are situations when the stress and strain fields become uni- i} = Cijki €x- (4)

form in the core inhomogeneity only. For instance, it can easily Rg,jive Eshelby’s single-inhomogeneity problem, in the double-
verified from the treatments given by Christensen and1j that inhomogeneity case, the stress and strain field$ will no longer

for isotropic three-phase spherically and cylindrically concentrige \hiform, when subjected to constant far-field stegsin due
solids subjected to uniform far-field loading, the stresses are u

form in the core inhomogeneity. This result can also be deduc
from the paper of Chen et al6] on three-phase cylindrically
concentric inhomogeneities, when the core inhomogeneity s
transversely isotropic. On the other hand, it can be observed fr
the results obtained by Chen et al. that when the core inhomo
neity is not transversely isotropic, the stresses cease to be unifi
there.

§Eneity.

Let x andx denote the Cartesian coordinates with origirend
ocated at the center of ellipsoidsand (), respectively. More-
Yler, the coordinate axes are taken to coincide with the principal
Hxes of the ellipsoids, as shown in Fig. 1. The double inhomoge-
HBhy is replaced with the equivalent double inclusi¢EDI)

. . . . . shown in Fig. 2. This equivalency holds for proper choice of
Walpole[7] considers an inhomogeneity with a very thin coat; omogenizing eigenstrairg(l)(x_) and e-*-(z)(x) defined over the
ing in an infinite domain under mechanical loading. To handle t% ! y

complexities of the interface layer he assumes thin enough coatlff lons(} and ¥, reSEeCt'VeW' As mentioned earlier, the eigen-

. . . . . inae* (1) (%) (2) i i
such that its existence has very little bearing on the elastic fiel@§ainse;j ~(x), ande™(x) are not uniform, and indeed can be
inside the central particle. With this simplifying assumption h&xPanded in terms of space variables

makes use of H|II§ theorenq 11]) to find the stress and strain ?ﬁu)(;):aﬁJraﬁkﬁJraﬁklﬁer ., XeQ, (s
components at the interface. He points out that even for thin coat-
ing, his analysis looses validity when coating is excessively soft Ei*j(Z)(X):ﬁi*j + Bt Bxix+ ..., xeW,  (5h)

or rigid. Mikata and Tayd8] only consider the axisymmetric _
problem of the short coated fiber in an infinite domain subjectaghere Eﬁ

to axisymmetric loading conditions. They model a short coatexymmetric with respect to indicésandj. Thus the constant@i’j ,
fiber as two confocal spheroids. They claim that Eshelby’s methegt, , ... are symmetric with respect to the free indices and also
cannot be employed. in "[hIS problem .and use Boussme.s&y«, I:aﬁlk! @ im=a%mi, €tc. Similar symmetries hold for
Sadowsky stress functions in their analysis to find the stress fl%&s_ The tensors referring to thecoordinate are indicated by

in and around a coated fiber. Benveniste ef@. on the basis of 55 The components of a Cartesian tersa@f ordern associ-

Benveniste's|12] re-examination of Mori-Tanaka’s theory, pre-aieq with thex-coordinate are transformed to the components of
sented a micromechanical model and computed approximat@ tensord according to the following relation:

stress fields and overall thermomechanical properties of compos- _

ites with coated inhomogeneities. To date, no general and exact Aij . k=% jm - - -AkdAim 0> (6)
solution of the double-inhomogeneity problem pertaining calcula-

tion of elastic fields inside the inhomogeneity and its coating has

been given. However, an analytical treatment for the calculation

of average field quantities within these domains has been given by P

Hori and Nemat-Nassdrl3] and Nemat-Nasser and Hdrl4].

They use Eshelby’s method and present a more general theory
than the one due to Tanaka and Mori's theorgib]) namely

“the double-inclusion model.” In their treatment, they generalize
the double-inclusion to a multi-inclusion model and show that the
average elastic fields over a set of nested ellipsoidal regions con-
sisting of innermost inhomogeneity and its surrounding layers of
coatings can be computed exactly, provided that the prescribed
eigenstrains are uniform but different within each annulus, and not
necessarily uniform in the core.

In Section 2 of this paper, following Eshelby’'s EIM and the
method of Moschovidis and Murigb] and Mura[16], a general
treatment of double inhomogeneity is presented. In Section 3, the
method is extended to multi-inhomogeneity system, where an el-
lipsoidal inhomogeneity is surrounded by many layers of coatings
of ellipsoidal shape. In this analysis the core and its coatings can
have arbitrary elastic properties, orientations, positions, and aspect
ratios. In Section 4 some numerical examples are presented to
verify the accuracy and robustness of the method. For this pur-

(x) and € P (x) are continuous, differentiable, and

pose, some relevant problems considered by other investigators

will be reexamined by the present method. In Appendix B, it is \ic J
shown that the average field quantities obtained over each annulus - T, T T T

and core of the multi-inhomogeneity configuration will be exactly ‘ L
the same as those obtained by Hori and Nemat-N44Sgr

2 Formulation of the Double-Inhomogeneity Problem Fig. 1 Double inhomogeneity S—¥ € embedded in an infi-

Consider a solid consisting of a double-inhomogeneityite medium ®. 3 and Q have arbitrary orientations, and ~ C?, C?2
3 =TUQ embedded in an isotropic infinite mediuin whereW  and C are distinct

4 | Vol. 68, JANUARY 2001 Transactions of the ASME
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Fig. 2 Double inhomogeneity is replaced by an EDI with proper ho-
mogenizing polynomial eigenstrains

whereq;; is the transformation tensor. The eigenstrains give risuppose that the polynomials given by expressighsnd(7) for
to a disturbance in the strain fields over the regiéhsand ¥ the eigenstrains and the disturbance strains are of degréet
denoted bye[V(x) and e[{?(x), respectively, which can be ex- the corresponding number of coefficients in each expression be

panded as follows: equal tom’. Equating the coefficients of like powers on both
;ﬂ(l)(f)zgﬂ +§idjk;k+ §idjk|7k7|+ ., XeQ, (7a) Sides of Eqgs(8) result in 12n" equations with 2’ unknown
a2 4. 4 § coefficients,a*s, B*s, {s, andz’s. In the remainder of this sec-
€ 7 (X) = 7 T mip Xt DX+, xe'W, (70)  tion, the remedy to obtain the necessary additional equations is

where &s and s have symmetry properties similar to those ofutlined.

a*s andB*s. It should be emphasized that the interaction betweenWith the aid of superposition we decompose the EDI shown in

the inhomogeneitie® andW is inherent in the disturbance strainsFig. 2 to the algebraic sum of an infinite domaunder uniform

€ P(x) and e[P(x). far-field stressgy), an inclusionS with eigenstraine}; ?(x) sur-
Employing the EIM, the following consistency conditions argounded by the infinite mediur—3, and an inclusiorf) sur-

obtained: rounded by the infinite mediurd—€ with eigenstrainss}; ) (x)
Cla (el + el (X)) =Cija (eh+ el —er VX)), xeQ, ande, ?(x), respectively. The schematic representation of such a
(8a) superposition is illustrated in Fig. 3.
According to the superposition shown in Fig. 3, the distur-
Clulentefi?(¥))=Cia(e+ e > (0 — 5P (x)), xeW¥ g peTp g

(8b) bances in strain fielde[{”(x) and €/?(x) are given by

&) x

_

Fig. 3 Decomposition of the EDI problem to a domain under uniform
far-field stress and three single-inclusion problems with proper polyno-
mial eigenstrains

Journal of Applied Mechanics JANUARY 2001, Vol. 68 / 5



a0 =6 (xe?) Fe (e D)~ el (xe?), xeq, o
(9a)

P =€;(x; e D)+ el (x; e V) - el (x; € ?), xe?,
(90)
where € (x; * () is the disturbance strain in regian (e being
domains3, or Q) at pointx due to the eigenstraig* " (i being 1
or 2 correspond to the homogenizing eigenstrain defined over the
regions() or ¥, respectively. The disturbance straief} (x; * )
is given by

(e )= f Fijmn(x=X ey (x)dx',  (10)

wherel';j,(x—x") is defined by the expressid@b). Whena is
an inclusion in an isotropic infinite body, where the eigenstrain
field in @ is in the form of polynomials of coordinates

€5 (0= + St X+ - (11)
then the disturbance in strain field is given by

Gﬁ(xﬁ*(i)):)’ijkl(x){ﬁ"‘ Yiikia () &kigt Yigiar O Lkiget -+ -

12)

where the tensorg;y, . = are Eshelby’s tensorg4]). We select
two distinct pointsxe() and xe¥ at which the evaluation of
elastic fields are desirable. It should be emphasizedxhatan
interior point of domaing) and¥ butx, which is an interior point
of domainV, is an exterior point with respect to regidh Es-
helby showed that, ik is an interior point of the ellipsoidal in- Fig. 4 A multi-inhomogeneity system consisting of  n-layers of
clusion a, and the eigenstrain in the inclusion is aith order €0atings

polynomial of the form given by the expressi@tt), then accord-

ing to (12) €} (x; €* ") will be an inhomogeneous polynomial n

whose terms are of degree (m—2),(m—4), ... (see Appendix _j 53 111 Next, the superposition described in the previ-

A). Asaro and Barneff17] obtained similar results for a single o5 section is employed to the resulting EMI. Thus, referring to
anisotropic ellipsoidal inclusion. On the other handxifis an  iye x-coordinate

exterior point of the inclusionw, then Taylor's expansion of the
tensorsy;, . about poini is usedsee Appendix A In view of Cl pq(€ngT €009(X)) = Cijpg((€9q T €000 (X) — €5 (X)),
the above discussions, an appropriate substitutioryfgr . into

(12) leads to a new expression fef (x;e* ")) in terms of poly- xeWy, k=12,...p+1, (14)
nomials of coordinates. Consequend§”(x) and e?(x) in nt1 . A

Egs. (9) can be expressed in terms of polynomials of degree eﬂ-(k)(x):Z eij'(x;e*“)(x))—E eij'(x;e*““)(x)),
After conversion of Eqs(9) to new sets of expansions fef(® =1 =1

and € in the manner explained above, the coefficients of like xeW,, k=12, ...n+1. (1)

powers from these new expansions are equated to those from Egs.

(7) to yield 12n’ additional equations, hence completing the nec2UPPOSe that the eigenstrains and the disturbance straimstfare
essary systems of equations. order polynomials of coordinates, each polynomial having

terms. Following similar arguments as for the EDI case discussed
in Section 2, the consistency Eqd4a) yield 6m’(n+1) equa-
) ) ) tions with 12n’(n+1) unknowns. Moreover, depending on
3 Extension to Multi-Inhomogeneity Systems whether poinix is an interior point of subdomaiB; or not, each

The theory presented for double inhomogeneity in Section 2 siantity €-i(x;e* (') can be expressed by an inhomogeneous
easily extended to the multi-inhomogeneity problem in which thieolynomial or Taylors’ series expansion of degnegrespectively.
interphase material surrounding the core inhomogeneity is This leads to an additional set ofv6(n+1) equations, which
multilayer. The core and the layers are of ellipsoidal shape withen completes the system of equations for the determination of
arbitrary elastic properties, orientations, positions, and aspect i2m’(n+1) unknowns. Using the theory presented herein, the
tios. The schematic representation of such a system, consistingswéss(strain can be calculated pointwise with high accuracy
the core andh layers of coatings, is illustrated in Fig. 4. Thewithin the inhomogeneities. In Appendix B, it is shown that by
ellipsoids are ordered a&;=¥,C>,CX;C ...CX,,; such employing an averaging scheme to the present theory, the average
that for the layei indicated by¥; we have consistency conditions obtained by Hori and Nemat-NaEE&f

. for the evaluation of average strains and stresses are recovered.
\I’iZEi—Ei,l, i=23,...n+1, (13)

where the cor& ; and each regio¥’; have arbitrary elastic con- . .

stants C! and C', i=2,3,...n+1, respectively. The muli- 4 Results and Discussion

inhomogeneity is surrounded by the matdix-2.,,; with elastic In this section the numerical solutions for the stress field of
moduli C. To formulate this problem, the multi-inhomogeneitythree different double-inhomogeneity problems will be given. For
system is replaced with the equivalent multi-inclusi@@MI)  the sake of comparison and in order to demonstrate the accuracy
with proper choice of homogenizing eigenstrairz$|('), i of the present theory, two problems considered by other investi-
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gators are reexamined. In Subsection 4.1, the coated short fiber ¢, /5] Coating
composites studied by Mikata and Tgyd and in Subsection 4.2
the coated continuous fiber studied by Mikata and Tja, and

by Benveniste et al[12] is reconsidered. In Subsection 4.3 a
double-inhomogeneity system is considered, consisting of a _————gg———-
spherical inhomogeneity with a spherical cavity and centers that
do not coincide. Hence, this system does not possess any of the T 7 Present Study
symmetries of the problems of Subsections 4.1 and 4.2. Further-
more, the interphase layer has variable thickness due to the exist-
ing eccentricity. L

Mikata & Taya

4.1 Coated Short Fiber Composites Under Mechanical 5~
Loading. As mentioned earlier, Mikata and Tay&] used the Fiber
Boussinesg-Sadowsky stress function to calculate the stress field i
around a coated short fiber under axisymmetric loading. This L
problem is schematically shown in Fig. 5. It is solved under
uniaxial far-field stressr‘z’, fiber aspect ratit/a= 20, coating to " f
matrix stiffness ratioG,/G,=2, fiber-to-matrix stiffness ratio
G3/G;=10, and Poisson’s ratio;=v,=r3=0.3. For coating
thickness to fiber radius ratio afa=0.1, they found the normal-
ized stress;zlcrg along the radial direction on the plaze-0 in
fiber, coating and matrix to be 8.8, 1.8, and 0.9 respectively. Theigy 6 variation of o, along r in the plane of z=0 obtained by
results together with the ones obtained by the present theory ai&@method of the EIM presented herein for the problem shown
shown in Fig. 6. According to the present theor)yzla‘z) in Fig. 5
=9.25,1.85 in fiber and coating, respectively. Inside the matrix,
just outside the coatingr,/o2=0.93 which gradually approaches

o,/09=1 away from the coating. In this particular example, sincapproximately equal. It should be emphasized that the method
the coating is thin, the stress fields in the fiber and coating auged by Mikata and Taya is valid for axisymmetric loading only,
nearly constant and hence the zeroth-order term in the expansinosever, such a limitation is not imposed on the present theory
of eigenstrains given by Eq¢5) of the present analysis suffices.which is applicable for more general loading conditions.

Mikata and Taya([8]) pointed out that for a coated short fiber

with a fiber aspect ratio ob/a=20, the value of the stress, 4.2 Coated Continuous Fiber Composites Under Mechani-
inside of each regioiffiber, coating, and matrjxis roughly pro- cal Loading. Mikata and Tayd 18] and later Benveniste et al.
portional to their corresponding shear modul@s This propor- [9] considered coated continuous fiber composites under thermo-
tionality becomes exact for a coated long cylindrical fiber. Spenechanical loadings. Mikata and Talyi8] used a four-concentric
cifically, in this example, when instead of a coated short fiber @rcular cylindrical model for the stress analysis of coated fiber
coated long cylindrical fibert/a— ) is consideredy, /o2 must composites subjected to thermomechanical loadings. Benveniste
equal 10, 2, 1 in the fiber, coating, and matrix, respectively. At al.[9] based on an earlier work of Benveni$te2] calculated
plications of the present theory and the method used by Mikaaaproximate stress fields for coated fiber composites. The model
and Taya to the coated short fiber problem considered in thi§ coated continuous fiber composites under transverse normal
section, show that the values of /a2 for the coated short fiber loading which have been considered by Benveniste €t9lis

are nearly equal to the solution of the corresponding coated lofi@own in Fig. 7. In this subsection, this problem is re-examined
fiber problem(i.e., nearly equal to 10, 2, 1 in the fiber, coatinglsing the method of EDI developed in the present work and the
and matrix, respectivelyIn the context of the present theory, thiscorresponding results are shown in Figs. 8 and 9. The material
result is further supported by the fact that, the Eshelby’s tensd¥perties used for this example are given in Table 1. The numeri-

for a cylinder and for an ellipsoid with aspect ratiols=20 are cal values of stress components at points A and B inside the
coating which have been indicated in Fig. 7, are given in Table 2.

The results obtained in the present work agrees very well with

Matrix

: r/a

o
1 141 1.5

o those of Benveniste et d09]. For this problem as in the previous
g example of Subsection 4.1, the coating is very thin and conse-
L quently the stress fields inside the fiber and coating are nearly
ld ! '7 WL j7| uniform. Again, the zeroth-order term in the present analysis

yields a reasonable results.

Fig. 5 A coated short fiber model considered by Mikata and Fig. 7 A continuous coated fiber model under transverse load-
Taya [8] ing considered by Benveniste et al.  [9]

Journal of Applied Mechanics JANUARY 2001, Vol. 68 / 7



Coating
Orr
__________ ag
= 88
¥
=
Al
2 L
b Fiber Matrix
0 Tt 5 r/a
.99M1

Fig. 8 Stress distributions along the Xx-axis obtained by the
method of the EIM presented herein for the problem shown in
Fig. 7
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Fig. 9 Stress distributions along the  y-axis obtained by the
method of the EIM presented herein for the problem shown in
Fig. 7

4.3 Double-Inhomogeneity System Consisting of Two Ec-

z

Fig. 10 A double-inhomogeneity system consisting of a cavity
Q surrounded by a spherical inhomogeneity 3, which in turn is

surrounded by an infinite domain, under far-field stress o?

respectively, are located on theaxis and are set apart by the
distanceA=2. Poisson’s ratio for the matrix and coating arg
=v,=0.3, and coating to matrix stiffness rai®,/G,=10. The

plots of stress distributionsr, /oy and o, /oY= o, /oy along the
x-axis are depicted in Fig. 11. This example demonstrates the
nonuniformity and variation of stres@train fields within the
coating, and it is observed that, as moving away from point B
toward point A along thex-axis, only then the stresses become
uniform. This is expected since the effect of cavity and its inter-
action with the coating becomes negligible, as if the cavity does
not exist and consequently the stresses become uniform, in agree-
ment with the Eshelby’s single-ellipsoidal inclusion results. It
should be noted that the values ®f and o, become negligible
outside the spher&. The values of stress components at the
points A, B, C, and D inside,, for which the zeroth and first-
degree terms of the expansions have been employed, are displayed
in Table 3. The results obtained considering zeroth and first-order
terms of the expansion are nearly the same as the results obtained
using zeroth-order term only.

5 Conclusions
In this paper, Eshelby’s equivalent inclusion method in con-

centric Spheres. Consider the double-inhomogeneity systenunction with a superposition scheme described in Section 2 were
under far-field uniaxial stress®, as shown in Fig. 10. This sys- employed to compute the stress fields in composites with coated
tem consists of a spherical cavi€y embedded in another sphereinhomogeneities. In general, the elastic fields inside the inhomo-

3, which in turn is surrounded by an infinite matrix—2.. The
centers of sphere€) and X whose radii arer;=1 andr,=4,

Table 1 Material properties of a coated fiber composite sys-
tem, shown in Fig. 7

Elastic Modulus Shear Modulus Volume

Material E(Gpa) G(Gpa) Fraction
Sic Fiber 431 172 0.4
Carbon Coating 34.48 14.34 0.0107
Titanium-Al Matrix 96.5 37.1 0.5893

Table 2 Some stress components obtained for the system
shown in Fig. 7 by the present theory

Point a9 (MP3) o, (MPQ) a9 (MPQ
A 0.08 —-0.09 0
B 0.27 1.21 0

8 / Vol. 68, JANUARY 2001

geneities and the coatings are not uniform, and hence were ex-
panded in terms of the Cartesian coordinates. As discussed in this

o /oy
Ux/a';
. - 0/
5 L
—A ! 1 — L ! B 1 (‘:./ x
[~——"7° on [ o I/
— Y I
L \\ Cavity |
I N i
) !
-5 i I
L }
I 4 /

Fig. 11 Stress distributions along the  x-axis for the problem

depicted in Fig. 10
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Tabl_e 3 Principal stresses for points A, B, C, and D along the ')’ijkl(x): 'Yijkl(o)v Xe a. (A1)
x-axis, corresponding to Fig. 10

Also, the higher order tensorg;;, ... can be expanded into the

Point A Points B and C Point D following polynomial forms([4]):
Terms in the O Oy % O % _ % O 9 _0 Yiikig(X) = Yijkig.m(0)Xm,  Xea,
Expansion @ d g & g o oy oy of

Yiikigr ()= Yiikiar (0)+ 2 Yijkigr. mn(O)XmXn,  Xea  (A2)
Zeroth-order term  1.55 -0.33 0.0 -6.82 0.85 -0.04 . .
Zeroth and first-  1.55 —0.33 0.0 —-6.78 0.90 0.1 ool
order terms On substituting A1) and(A2) into the expressiofil2) an inhomo-
geneous polynomial of for € (x;e*(),xe a will be obtained.
The constituent terms of this polynomial are of degragm

paper, the problems of confocal spheroids and concentric cylin2):(M—4), . ... But |fp0|ntx9 is an exterior point with respect
ders with thin coatings are within the range of applicability of th& the inclusiona, then Taylors’ series expansions gy ... (X)
methods proposed in the literature. Re-examination of these pr@pout the poink=x, are used,

lems using the present methodology shows that, even when onl . — . 1.

the zerothg-ordefterm in the expar?gions is considered, the stresys Vi (0= Yijia (X0) F it m(X0)Xm+ 2 Vijia mn( Xo) XX
profiles obtained are in excellent agreement with the ones reported + ..., Xe¢a,

in the literature using other approaches. Moreover, in the present .

paper a more general problem of a double-inhomogeneity system Yijkig(X) = Yijkig(Xo) + ¥ijkig m(Xo)Xm® Z ¥ijkiq,mn(X0) XmXn
consisting of two eccentric spheres has been examined. For this o Xoéa, (A3)

problem, the zeroth-order term in the expansions of eigenstrains

erM(x) ande} P (x) yields nearly the same results as when the Dot

first-order term of the expansions was also included. - : . . .
It should be emphasized that the theory presented hereinsllébsftu.tlzn(i)oﬂAs) into the expressioii12) yields a polynomial

valid not only for thin, but also for thick coatings, as well as foJOr €0 €e).

multilayers of variable thickness. Furthermore, the present theory

can handle multi-inhomogeneity systems consisting of ellipsoidg| pendix B

inhomogeneities of arbitrary elastic constants, sizes, and orienta-" o _ _
tions. In this Appendix it is shown that by employing the expressions

(9), which resulted from the superposition presented in Section 2,
the average consistency conditions derived by Hori and Nemat-
Acknowledgments Nasser{13] are recovered. Denote the volume average of a field
This research was supported by Sharif University of Technafuantity (.) overv by ((.)),, and apply volume averages to the
ogy. consistency condition&) over () andV, respectively, we obtain

Appendix A Clu(edt (e ™)) =Ciju (e +(ef V) o (e M)a), (BL)

_ Consider an ellipsoidal inclusiom, in an infinite isotropic elas- Ch(en+ (el w)=Cijua(ep+ (e )y — (e ?)w), (B2)
tic medium, whose principal axes coincide with coordinate axes, . ]
X1, X, andxs. Suppose that the eigenstrain in the inclusion is ihaking the volume average of expressi@a) over ()

the form of polynomial of coordinates as given by the expression A () = (2 (x € @)Y+ ( e2(x: e (V)
(12). It follows that the disturbance in strain field can be presented (el "00)a=(ej( e PNt (e (€
by expression(12), for which the following relations involving —(eff(x; e @))q, (B3)
i hold:
Yiikt ... where without loss of generality the bars have been dropped. Us-
8m(1— V) Yijkl = H,klij - 2V5kIF,ij - (1_ V) lng Tanaka-Mori resul([lS]) we have
X[F k0l +F xi6ji + F i Sik T F i O], (€% €M) o=Sj(Q) (el M)a, (B4)
87(1— ) ¥ijig=Haxij — 2v0Fqj— (1 ») whereS;;, () is given by Eq(2a). The first term in(B3) is given
by

X[Fqkjdit+Fqkidji+Fqj ikt Fqi Ol 1
: (ei(xe®))a=q LLFi;mn(xfX’)e?;f)(X’)dX’dx.
such that (B5)

If we let
H(x)= [ |x=x'|dx’,
f Lijmn(X=X) (e (X' ) = (emw)dx'=0,  (B6)
1! ’ ’ ’ \I/
Hi; ___k(x)=f XX X[ x=x"[dx’, i ) )
« as assumed by Hori and Nemat-Nagge3] which can indeed be
justified when the coating is thin enough, th@b) becomes

F(X):fab((i—xxﬂ’ <Eﬁ(X;€*(2))>Q:Sijmn(QxE:](nZ))Q
O + (Sjmn(2) = Sjmn( Q) €r dw - (B)
Fij . «(X)= Jaﬁ The last term in(B3) becomes
(eij (%€ ®))a=Sim(Q){en)a - (88)

where, in generaly;jy . (X)# yij ... (X) unlessi#j andk#l.
If xea then([2]) Substitution of(B4), (B7), and(B8) into (B3) yields
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(™) a=Sji ()Mo + (S () = Siju (Q))<€§|(2)>w(l-39)

We have that
(eM(x), e (x), xe,
(e@(x),e D (x)), xeW.

Define the volume fraction of asf=Q/3, then

(ei)x=Sja(){e)s= (€Yot (1=(e*),
(B10)

(B11)

(€'(x),€" (x))=

(ef)s=F(e Mo+ (1-1)(e @)y .
Combination of(B7), (B10), and(B11) leads to
f
(e ) =S (N ®)ut 77 (Sja(3) = Sja(2))

X((e™ya= (e )v)- (B12)
Upon substitution ofB9) and(B12) into (B1) and(B2) we obtain

(Clia = Cijk) e+ Samn( Q) eni) 0+ (Sama(2) = Samn(Q))
X<E:n(r12)>‘l'}+CijkI<E:I(l>>Q:O1 (B13)

f
(Chi—Ciji) | €+ Samn(S){eh)w + -7 (Simn(2)

~ Sumd( Q) ((eni o= (en)w) | + Cija (@) =0,

(B14)

which are the average consistency conditions obtained by Hori

and Nemat-Nass¢d3].
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A closed-form Green'’s function solution for the axisymmetric stresses in an elastic coil of
superconducting magnets is presented, which provides the components of stress through-
out the coil and includes the shear stress in addition to the normal stresses. The Green’s
function method permits the development of a solution irrespective of the type of magnetic
body forces within the coil. Green'’s functions are derived by using finite Hankel trans-
forms appropriate for a cylindrical coil.[DOI: 10.1115/1.1345700

1 Introduction or power series expansion of the fields and displacemghfs).

The direct analytical solutions for infinite or semi-infinite domains

The prediction of stress and strain is essential for both mechapj- f e .
cal and electrical design of high-field solenoid magnets. Thegcte not appropriate for a finite domain such as a magaet14).

magnets are designed in a variety of configurations. A superco- Fundamental Equations for the Stress Functions
ducting magnet is one example of such magnets, which can be . o T )

treated as a combination of several solenoid coils, where each coifonsider an elastic isotropic coil with inside radiusapfout-

may be reinforced by a nonconducting layer. Depending upon thile radius ob, and length of 2 as shown in Fig. 1. Using the
geometrical specifications of a coil, magnetic fields may behaguilibrium equations, constitutive ~equations, and strain-
differently. These fields result in magnetic body forces, and thésplacement relationships, th(_? governing equations for displace-
stresses. Traditionally only the tangential component of the strd8§nt vectoru(r,z), for an axisymmetric distribution of body

at the plane perpendicular to the middle section of the longitudinf@rcesX(r,z), may be written as

axis of a coil(midplang has been considered for design and fail- (N @) V(V.Uu)+ uV2u+X=0 1)

ure analysis. The value of shear stress has been determined to be ) ) ) )

small in the midplane but it becomes larger toward the ends of théiere V2 is the three-dimensional Laplacian andand . are

coil. In the analytical solutions available in the literature, théLames) elastic coefficients[15]). o

stress analysis has been performed for just the midplane and she&om the Helmholtz theorem, any vector satisfying 8g.may
stress is assumed to be negligilffé—4]). As a result, a three- D€ resolved into a sum of a gradient and a curl

di_mensional closed-_form s_olution is desired to understar)d th(_e dis- U=Ve+VXA )
tribution of stressesincluding shearthroughout a solenoid coil. ) ) ) i

In the present work, a general closed-form solution, using tigheree(r,z) is a scalar potential anki(r,z) is a vector potential
Green’s function method, is derived for an elastic, isotropic coil §ch thatv.A=0. Incorporating the displacement vector from Eq.

a high-field solenoid magnet. This solution is applied to the in{2) into Eq.(1) yields an equation in terms of potential functions

portant case of a superconducting magnet. This analysis is foNdA.

limited tto the midplane and can be used for any type of solenoid (N20)V(V2h) + uV X (V2A) +X=0. ©)
magnet. ) ) ) )

The use of a Green’s function solution is not limited to magl he independent potential functiogsandA may be written as
netic body forces. It can be applied to other axisymmetric elastic- A=aVXW ¢=pBV. W (4)

ity problems for finite bodies. The Green’s function solution can )

be used for inclusion problem in composite materials whetéhere « and g are arbitrary constants, and components of the
eigenstrains may be considered as body ford&s6]). The VectorW are the stress functions. Introducing 4 into Eq.(3)
Green’s function solution can also be applied to specific problerffds to a partial differential equation for vectn.

in fracture mechanics and composite materififs-9)). Fictitious BN+ 2) VAW +[ BON+24) + na]VX[VX (V2W)]+X=0

body forces can be introduced in composite materials, where the (5)
difference between the thermal expansion coefficients of the fiber o .
and the matrix results in residual stresses. In order to simplify Eq(5), we may choose the arbitrary constants

A limited number of publications on the approximation of the* @hd 8 as —1/u and 1/ +2u), respectively. Thus, Ed5)
three-dimensional problem are available in the literature. Sorfieduces to the component form.
solutions are obtained by neglecting shear throughout the coil

i . ) 5 2 47, 4 . 1\,
([10]). Other solutions are based upon numerical techniguds) Ve— 2 v, — Ly R Ve— 2|59 +X,=0
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF 1\2 4 aZ\Ifg 4 1)\ 0¥,
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED v2— — o~ a3 t =3 V2— —|——+Xy=0
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Oc- r r* a6 r r d0

tober 1, 1999; final revision, May 8, 2000. Associate Editor: M.-J. Pindera. Discus- 2
sion on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, \% ‘1’24‘ XZZO (6)

Department of Mechanical Engineering, University of Houston, Houston, TX 7720§ . . . .
4792, and will be accepted until four months after final publication of the paper itség€Cause the geometry and loading are axisymmetric, the partial
in the ASME DURNAL OF APPLIED MECHANICS. derivative with respect to tangential direction is ze#bg6=0.
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Fig. 1 Schematic diagram representing one coil of a magnet

Hence, the three partial differential equations in Bj.reduce to

Rl | V? nzf—m d2+1d nz)
n 2T a2 T rdr o2
Jn(¢&ib)

f(a)) — (R[]
(16)

B 2
‘?(f(b)_ (&)

4 Radial Green’s Function

The Radial Green’s function fo¥, , radial stress function, is
obtained by solving Eq.7) with Dirichlet homogeneous boundary
conditions. Applying the finite Hankel transforaf order ong to
each term of Eq(7) yields

three uncoupled partial differential equations for radial, tangentiavhere(y; is a root of the transcendental equation

and axial stress functions:

1 2
(VZ— r—z) v, +X,=0 )

1 2
(VZ— —) ¥ ,+X,=0 (8)
V4P ,+X,=0. 9)

The body force in a magnet is the Lorentz force, a function of

r andz related to the magnetic fiel&®, and current densityd, by
X=JXB. (10)

For an axisymmetric distribution of Lorentz forcé=J,e, and
B=B,e +B,e,. Thus, the vector product of theandB leads to

X,=J,B, X,=0 X,=—J,B,. (11)
In the absence of a tangential magnetic body force in(8q.the

2
ml{(w rif) T, [=—R[X]. (17)
Use of Eq.(16) in Eq. (17) results in
2\2
—5+ W, (£4i,2)= =X, ({4 ,2) (18)
J1(£1i@) Y1(£1i0) = I1(£1ib) Y1(£12) =0 (19)
and
o b
qfr(glivz):J’ rv, (r,z)Ky(&qi,r)dr (20)
o b
Xr(gli 12):J rXr(r1Z)Kl(£li 1r)dr1 (21)
where
K1(£1i,1) =[I31(£2ir) Y1(£1ib) = I1(L4ib) Y1(Luin)]  (22)

is the Fourier Bessel kernel. An additional transfgimthe axial
direction is needed for solving Eq.18). Considering the radial
body force is an even function of and the interval is finite
[—L,L], an appropriate transform is the finite Fourier cosine

tangential stress function will be zero, resulting in a zero tangeffansform. By introducing the finite Fourier cosine transfaim

tial displacementi, .

3 Finite Hankel Transform

The partial differential equations represented by E@g.and
(9) may be solved by using finite Hankel transforih$6]). The
finite Hankel transform of orden of function f(r) on a closed
finite interval[a, b] is defined by

_ b
ﬂ‘in[f(r)]:f(ii):f rf(r)Kn(Zi,rdr (12)
where(; is a root of the transcendental equation
Jn(Zia)Yn(£ib) =Jn(£ib)Yn(£ia)=0 (13)
andK,,(¢; ,r) is the Fourier Bessel kernel.
Kn(Zi 1) =[In(&ir)Yn(£ib) = In(£ib) Yn(4ir) ] (14)

The inverse transform for the finite Hankel transform is

? » {2(La)

f() =R, TF(&)]= F(GKA(G ).

T J2(gia)—JA(Lb)
(15)

where the summation is extended over all positive r@ptsThe
finite Hankel transform of a Laplacian &{r) (in cylindrical co-
ordinate is given by
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the axial direction of Eq. (17),

. , |2 -
c *§1i+EZ W (£1i,2) | = —Jc[ X (10, 2) ],

the differential equation is converted into the algebraic equation

27_[_2 2 _
5 W (Lai )= =X, (LaiM) (23)
wheren is an integer. The functions
- L nmwz
W, ({1i,n)= L‘I'r(fli ,Z)COSTdZ (24)
_ L nmwz
Xi(£1i,n)= X (L1 yZ)COSTdZ (25)
-L

are the finite Fourier cosine transforms df,({,2z) and
X(g1I ,Z). The inverse finite Fourier cosine transform of
W, (£4;,n) and inverse finite Hankel transform &f,(¢y;,2) are
defined by

V(41,2 =3V (& 0]
1 . 1< - nmw
= o0 Velen 0+ £ 2 Foldnm) cos' - (26)
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W, (r,2)=R; [¥,({1,2)] w2§ Z32(y2) {1

2 2924 V. (r,z)=— 2 Ftya) -0 | 28 X (£1,0)
=TS W DK )
2 & Bi(Lya)— (L) T TITRAE . o 1 )
27) L n:lWX(Q.,n)cos Ky(Zaior)-
(28)

Introducing Egs(21) and(25) into Eq. (28) gives the solution of
Substitution of Eqs(26) and(27) into Eq.(23) yields an equation the radial stress functiow,(r,z) in terms of the radial body force
for the radial stress function: X (r,2).

Lb

2 o0
\Pr(r,z)z—%E 2L§lffrxu 2Ky (Zyr)dr'dZ

i=1

Lb
” 1 nwz nwz' ZiiJi(Zlia)
+L8 cos ffr’x r',z"K S r'ycos——dr'dz | =——————K or
2 | e T ) TR Koo Pla R D
(29)
I
By interchanging integrals with summations, we may write Ecand
(29) in the form _ R
e V(Lo 1) =Ro[ I ¥(1,2)]]
*lf,(r,z):f fXr(r’,z’)Gr(r,r’,z,z’)dr’dz’ (30) Lb
-LJa . Nmz
where = r\IfZ(r,z)Ko({Oi,r)sderdz (34)
—La
772 §1| (é‘ll )
G/(r,r',z,z2')=— P P 04 X (&n 1) =RA[ 5
( ) 2 | 2 Jl(é’lla) Jl(gllb) XZ(IOI 1n) E)QO[L‘S[XZ(I’vz)]]
Lb
XK(£1i,K(&qir") - nmwz
. = rX,(r,z)Ko(Loi ,r)sderdz (35)
X 7 +L° 7.2 - 222 e
2LEy; n=1 (L3 +n %) are transforms of the axial stress function and axial body force.
nwz' nwz Here,
X cos L oS — 31) Ko(Zoi »1) =[JIo(Zoir) Yol Loib) = Io(L0ib) Yo(Lair )] (36)

is the Fourier Bessel kernel for the zero-order transformation. The
inverse transform of’ (£ ,n) is

W,(r,2)=Ro 35 1V (Loi M1

is the radial Green’s function.
5 Axial Green’'s Function
The axial Green’s function is obtained by solving the partial

differential equation for the axial stress function, Ef), with a2z 23 ¢na)
Dirichlet homogeneous boundary conditions. Here, finite Hankel =— E 2 %
transform in the radial direction and finite Fourier sine transform L =1 721 J5(Zoid) — Jg(Loib)
in the axial directior(since the axial body force is an odd function —
of 7) are used. _ xsin——(¢oi ,MKo(&or .1)- (37)
Applying the finite Hankel transform of order zero in and
finite Fourier since transform ig to Eq.(9) yields Incorporating Eqs(32) and(35) into Eq.(37) gives the solution to
) 272\2 _ _ the axial stress functio® ,(r,z) in terms of the axial body force
—Goim Tz Waloi )= —Xo(Loiu0) (32)  X,(r,2).
wheren is an integer; satisfies W (r,2)= f f 2)G,(r,r",z,2))dr'dz  (38)
Jo(£0id) Yo(£oib) = Jo(£oib) Yo(Loi@) =0 (33)
where
|
Gurrr a2 TS E[ - G0 e rokttn st in™™] (@)
r,r,zz)=—— r i T i ,r)sin——sin—
’ 2 & & (LG +nPm?)? J(Loia) — J5(baib) - 070 TR L L

is the axial Green'’s function.

Journal of Applied Mechanics JANUARY 2001, Vol. 68 / 13



6 Boundary Conditions
The displacement vector is related to the veeloby Eq.(40).

1 1
= — — + .
U= = 2 VX (VXW)+ eV (V.)

The stress tensor in terms of the displacement vector is defined by
(41)

o=NV.W)l+u[Vu+VTu]
wherel is the identity tensor. Substituting EGL0) into Eq. (41)

results in stresses in terms of axial and radial stress functions

—2‘9 V2 ! P+ ! v? ”
=2 | VY T Y e
2 V2 1 " 1 V2 190
T\ VT T Y T )¢
—2(9 Vew )+ ! v? >
=25 (VI TV )@
SR RSN PR A
T VT V2V 1 9, (42
wherev is the Poisson’s ratio and
19 v A 23
p=r o (r 0+ P (43)

is the divergence of the vecta.

Traction-free boundary conditions are appropriate for a sole-

(40)

1 2,2

502(“):2 1v[_rz(§0ixn) v

i=1

B[

§O|(l_ )

Jo(£oib) ]
O( §O| )

_i 2 1 r nm
T a1y | Al T

2,2

+BL (L2 )| 2= (2= )+ Ei(1-)

2772

V?*Zgi(lfv)

©4(N) :Z

|

2
%[rz(zm,m

2772
?(1—1/)

—-1" nw
5(Loi)= — [_Fz(%i,n)T[

|

+£5(2—v)

* n 2,2
pe(ﬁi):lgo (1:13 (Fr(glivn)gli[nL_Z(l—V)_Vgii ]
with
s L3 {535 Lai)
| A bon)= ((Lzé’éﬁnzwz)z T Zad) 3 La)

noid coil. Therefore, the radial and shear stresses should be zero at

the inside and outside radiif =a andr=b), and the axial and

shear stresses should be zero at the ends of thezeit-().

Substituting the solutions for radial and axial stress functions
from Egs.(30), (31), (38), and(39) into Eq.(42) and computing
radial and shear stresses at the inside and outside radii, and the

axial and shear stresses at the ends of the coil, yields

©

nmwz

o,(a,2)= 20 pl(n)cosT (44)

%

nmwz
0a(a.2)= 2, pa(msin— -

nmwz
oi(b,2)=2, py(n)cos——
n=0

nmwz

o,(b,2)= E P4 n)sm—

(r,iL)=zl [95( Lo Ko(Loi 1) +06( L1 KE (L1 ,1)]

o,(r,=L)=0
where

K (L1 ,1)=[Jo(£2iT)Y1(L1ib) = 31(£1ib) Yo(£1ir)]

Ki(&qi,0)+ K1(&1i.1), (45)

oy Ly or
andgp,(n) throughgp,(n), ¢s({oi) andpe(4q;) are given by

S o201 n Jo({oib)
pa(m =2, EE{—Fz@m,m—” Sy ral ()

L Jo(Loid)
T ) 2 (1= )| 20D 46
L2 ( V) gli( v Jl(é/oia) ( )
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L (b _nmz'
X r’XZ(r’,z’)Ko(goi,r’)sder’dz’
-LJa

(47)
772 gi 2(§1|a) L3
Frlbu == (2 Rina) i ab) (L5 122
L (b nwz'
xf fr’Xr(r’,z’)Kl(gli,r’)cos 0 dr’dz’]
—-LJa
2 (¢, 1
T/(£1,0)=— = Hend)

2 B({ya) - (b 2L,

L (b
xf J r'X.(r’',z")Kq(&y;,r")dr'dz".
-LJa

From Eg.(44), it can be observed that except for the shear
stress at the ends of the coil, boundary conditions are not satisfied.
The radial and shear stresses impose forcing functiozsabthe
radial boundaries and the axial stress asserts a forcing function of
r at the axial boundaries. Thus, a complementary solution for
either radial or axial stress functigsince stresses are related to
both) is needed to neutralize these forcing functions.

7 Complementary Solution for the Axial Stress Func-
tion
Let us consider functioré(r,z) (an odd function inz) as a
complementary function for the axial stress function. From Eq.
(9), &(r,z) must satisfy the homogeneous part of the partial dif-
ferential equation for the axial stress function.
V4(r,z)=0 (48)

From Eq.(42) radial, axial, and shear stresses are expressed in
terms ofé&(r,z).

2
—3|&(r,2)

i v2— 49
Urlvazv (49)
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_ LA PP ‘92 - {5i95(L0id) .
e K DT Faa) -ty S0
1 9 5 -
_ 7 _ 2_ 7 1
(TrZ_l—V ar (1 V)V 022 f(r,Z) +BZCOSK§O|Z)]K0(§0|, Engl[ ( L7T )

The complementary function must reverse the effect of the im-
posed forcing functions by stresses at the boundaries. As a result, +Z 1. B rK (m" ) 2_7@ I (n_wr>
from Eqgs.(44) and (49) boundary conditions fog(r,z) are ob- L L Mol

tained and given by

1 a( - &2
1-vaz\” ar? &(.2)

2 5 K (n'n' nwz 55

+ L DKo Tr smT (55)
The six arbitrary constants in E5) may be evaluated by using

(50) the six boundary conditions given by E&Q). Applying the shear
stress boundary condition atL yields

“ nmwz
=—> pi(n)cos—
n=0 L

r=a

2

1
I Vir (1-v)V2- %}g(r,z) :—Z @(N) sm% Bi=w({o)A (56)
r=a wherew({g;) is expressed by Eq57).
Yo e O _ nmz _ — Lo
1-v (?Z(VV )g(r ? b ngo pan)cosT @)™ 2+ ZoL cot ZoL) ®7)
1 s P % i Employing the radial boundary conditions4r,z) and using Eq.
| (1-nVi- —z}ar,z) == pamsin—— (3D resulisin
1—vor Iz r=b n=1 L - ~ ~ A~
A11(N)Ap+ A1) B+ X13(N)Cr+ X14(n)Dyy
1 o], Ve az}
1—var| 2V g2 E0) + 3 Aullor A =01(n) (58)
== 2, [os(ZoKo(Zor 1)+ pe(L2)KE (231.1)] Xoa(N)Aq+ Koo ) By + AN Co+ X24(n)D,
1 9 9 + O Ag(Loi A= po(N) (59)
I _ 2_ — . 2\60i» i 2
1_1“9',((1 v)V &Zz)f(ryz) . 0. =

The partial differential equation faf(r,z) with the given bound- A32(N)An+ A32(N) B+ A33(N) Cpht X34(N)Dyy

ary conditions may be solved by using the superposition principle. %
The substitution of(r,z) = £,(r,z) + £,(r,2) into Eq.(48) yields +E As(Loi M)A =p3(N) (60)
two partial differential equations faf;(r,z) and &,(r,z). i=1

V4&y(r,2)=0 (51) Xag(MAL+ X a0 B+ X4 Cp+ Xag(M)D,
V4&,(r,2)=0 (52) i
+ A M)A =p4(n 61
Solution to &,(r,z) is achieved by applying the finite Hankel =1 (Lo MA=94() (61)

transform of order zero to E¢51) and solving the resulting dif-

ferential equation fo. where x11(n) through A ,(n) and A1(Zqi,n) throughA4(Zgi,n)

are given in Appendix A. The boundary condition for axial stress

21 . 2(¢6i2) . atz=L provides
61 D= 72 oy LA SIN0?) A A A
o o As(Zo)Ai+ 2 [Xsil(Zoi M)At Xsol Lot 1B+ Asa( Lo ,N)Ey
+Biz cosh{{iz) IKo({oi »T) (53) n=t
Here, A; and B; are arbitrary constants. Solution £(r,z) is + Xsal Loi M Dn1=Ts(Loi . {11) (62)

obtained by employing the finite Fourier sine transform to E . _ . .
(52) and solving the ensuing differential equation for %‘alrgeé?v}é%(iﬂoxgz);mj?:%h Xsa(Zoi M), As(Loi) and I's(oi 1 ¢11)

0

Equations(58)—(62) represent a system of equations where the
1 A 1. nw ~ AT A
&(r,z)=o— 2 Anrl g rl+=BurKy| —r unknowns areA,,, B,, C,, D, andA;. To evaluate these un-
2m A= L n L knowns, the infinite series in Eq&8)—(62) are replaced by finite
5 5 summations with an acceptable truncation error. Hence, the infi-
257 (n_wr 257y k (n_”r) Sinnwz nite upper limits fori andn are changed to finite values bf and
L ™oL L "ol L N, respectively. Expanding these finite summations would result

(54) in a system of equations withNHM unknowns and equations,
. . where unknowns aréd;—Ay, B;—By, C;—Cy, D;—Dy and
In Eq. (54), A,, B,, C,, and D, are arbitrary constants, A;—A,,. Equation(62) givesM equations by letting vary from
lol(na/L)r] andl{[(na/L)r] are the modified Bessel functions1 to M. Moreover, allowingn to advance from 1 tdN in Egs.
of the first kind, andKy[(n#/L)r] and K,[(nw/L)r] are the (58—(61), results in N equations. By solving this system of
modified Bessel functions of the second kind. The superpositieqguations, the arbitrary constants for the complementary solution
of Egs.(53) and (54) furnishes the solution tg(r,z). of the axial stress function are obtained. The combination of the
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complementary and the Green'’s function solutions for the axial 20+
stress function yields a solution that satisfies both the boundary
conditions and the axial body force. This solution together with
the radial Green’s function determines the distribution of stresses
in a given caoil.

8 Numerical Results

The Green’s function solution is applied to a 23 Tesla super-
conducting coil. The parameters for this coil are given in Table 1.
Figures 2 and 3 show the tangential and radial stresses through the

coil along the radius at three different axial positiozs=0, z -140 +——r————————
=L/2 andz=L). Figure 4 shows the characteristics of the axial 100 110 120 130 140
stress through the coil along the radius at the midplane zand Radius, mm

=L/2; and Fig. 5 shows the shear stresg-at /2. Note that due Fi
to traction free boundary conditions, axial and shear stresses &
zero atz=L and shear stress is zero at the midplane Q) be-
cause of symmetry.

. 4 Distribution of the axial stress for a 23 Tesla supercon-
ting coil

1.5
z=L/2
Table 1 Parameters for the 23 T superconducting coil ]
P |
Name Symbol Value Unit =
Inner radius a 100.00 mm o
Outer radius b 136.50 mm 1
Half length L 28.00 mm 0.5+
Elastic modulus E 111.00 GPa
Poisson’s ratio v 0.30
Current density J 530.10 Almnt
0T
100 110 120 130 140
800+ Radius, mm
2001 Fig. 5 Distribution of the shear stress for a 23 Tesla supercon-
B ducting coil
600
8 ] z=0
= 500 9 Conclusions
© 400 =L Analytical closed-form solution for the distribution of stresses
has been developed for a coil of high-field solenoid magnets, in-
cluding superconducting magnets. This solution is presented in
3004 - forms of the Green'’s functions, which permits the development of
1 a solution irrespective of the type of the field or its distribution
200t within a coil. The problem was formulated in terms of stress func-
100 110 120 130 140 . , : . S
Radius, mm tions. Green’s functions were derived by using finite Hankel and
finite Fourier transforms. Boundary conditions were satisfied by
Fig. 2 Distribution of the tangential stress for a 23 Tesla su- introducing a complementary solution for the axial stress function.
perconducting coil The radial Green’s function with the superposition of the comple-
mentary and the axial Green'’s function provide a comprehensive
analytical solution for the stresses.

The Green’s function solution provides a complete analytical
stress solution for an isotropic coil. This solution should be used
as a foundation for the stress analysis of multilayer magnets. The
future work should also extend this solution for an orthotropic
coil.

&
=
© Appendix A
X - 1) n7T| n n2m? | nw
nN=——|v-5|-—5lgl —a|—- =s3al)—a
11(N) (1-v) v 22 O\L o3 ¢l
3 z=0 2 o
«45 Xud) -1 ( l)mTK nw nem an
100 110 120 130 140 12AN)= =S|\ V= 5|72 Ko| 78]~ 5z akg —a
Radius, mm (1-v) 2/ L L 2L L
. o . - né#® (nw n?z21 [n=w
Fig. 3 Distribution of the radial stress for a 23 Tesla supercon- Xpa(N)= ——| — —lo| —a|+—5=14| —a
ducting coil 3 (1-v) L oL LS allL
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Static and Dynamic
n.murakami' | GCharacterization of Some

Professor

Mem. ASME 't IVI d I
e-mail: murakami@mag.uscd.edu Tenseg rl v 0 u es
Y. Nishimura A set of procedures was presented for characterizing static and dynamic response of
Graduate Student tensegrity modules. The procedures were applied to two tensegrity modules: a six-bar
. spherical module and a two-stage cylindrical module with three bars at each stage. The
Department of Mechanical and singular value decomposition of the initial equilibrium matrix revealed prestress and
Aerospace Engineering, infinitesimal mechanism modes. The prestress stiffening effect of infinitesimal mechanism
University O_f Cahforma, modes was found to be isotropic at each node. In the initial quasi-static loading, infini-
9500 Gilman Drive, tesimal mechanisms exhibited soft response. As the deformation advanced, the stiffness of
La Jolla, CA 92093-0411 tensegirty modules increased almost quadratically with infinitesimal mechanism ampli-
tudes. Modal analyses revealed that the lowest modes were those of infinitesimal mecha-
nism modes and their natural frequencies were an order of magnitude smaller than those
of higher deformation mode$DOI: 10.1115/1.1331058
1 Introduction mechanisms. As exceptions to the above Kbg<0, Maxwell

Hoted structures which exhibited “inferior order of stiffnessg.,

Kenneth Snelson invented a cylindrical tensegrity tower in, . ;
1948 ([1]). By extending the concept of geodesics, Fuller deve t(l)fLrilqegs: ﬁogrdlfjge order of prestress instead of on the order of

oped spherical tensegrity modul@&]). According to Marks and o . . .

L E alladine[11] observed that most of tensegrity structures intro-
Fullelr [.2] and PUQH.B]’ tensegrity s a class qf truss structures ced by M[ark] and Fullel2] possess mechagnis%s that could be
consisting of a continuous set of cables and discrete bars. Flguf S ened by prestressing to achieve “infinitesimal mechanisms,”

1(a) and Xb) illustrate, respectively, a six-bar spherical tensegrity "\ vwell's inferior order stiffness. By investigating the vector

module ([4]) and a two-stage cylindrical tensegrity module with . . N A L2
three bars at each stadé)). spaces associated with the initial equilibrium ma#i¢0) in (1),

Aerospace engineers have adopted lightweight tensegrity Strls:qlladlne[1l]dobta|n((ejd r:he relatflonsfhlp behtwgen the number of
tures as a new deployable structural concept. Mp#ip Furuya prestress modess and the number of mechanismg as
[7], and Hanaof8,9] proposed tensegrity structures as deployable Ne— N = Mx ©)
space structures. Skelton and Sulfah presented a smart struc- s M '
tural system integrating tensegrity structures with modern control Tensegrity structures exist under prestressed configurations.
theory. These prestressable configurations must be found by solving ini-
For a truss structure witmg elements or members anmtyy tial equilibrium Egs.(1) at t=0 without external forcesf(0)
nodes or joints withnc linearly independent displacement con—=0. For a prestressable initial configuration, there is a unique
straints, there are,=3 ny—n¢ unknown displacement compo- prestress mode with tension in cables and compression in bars.
nents. In this paper it is assumed that each structure is constraingitlal element forces must also be computed by solving initial
against rigid-body motionnc=6. Let the element internal-force equilibrium problems.
vector be denoted by, anngX 1 column matrix, and the external  Cable networks are another class of truss structures and are
nodal force vector by, anny, X1 column matrix. The equilibrium similar to tensegrity structures in their need for finding initial
equation at time for quasi-static loadind(t) is expressed as  geometry and prestress modes. Therefore, previous works on the
A(D)s() =F(1) 1) mechanics of tensegrity structures have benefited from the large
' deformation analysis of prestressed cable networks by Argyris and
whereA(t) is anny X ng matrix consisting of direction cosines of Scharpf[12]. Based upon their theory, a pre-stressed initial con-
truss elements(The equilibrium matrixA(t) will be defined in figuration of a cable network has been computed by using a non-
(7a—c). linear finite element code based upon a guess of the initial geom-
Clark Maxwell[10] classified the stiffness of truss structures bgtry. In order to solve nonlinear equilibrium equations either the
using the difference between the element nunmeand the num- Newton method([13]) or dynamic relaxation method$14,15)

ber of unknown displacement components: have been employed. However, these numerical procedures for
finding initial configurations are not useful for control applica-
Mx=ng—ny. (2)  tions. Analytical expressions can describe initial configurations by

quing an order of magnitude less number of parameters than what
Js used for numerical procedures.

The objective of the paper is to present a set of procedures for
characterizing static and dynamic response of a class of tensegrity
modules withMx=<0. The procedures are illustrated by using two
o whom correspondence should be addressed. S|mpl_e tensegrity r_nodules sh(_)wn in F|g$a_1)land (b). The first

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF step in characterizing tensegrity qumes IS t_O compute the Max-
MECHANICAL ENGINEERS for publication in the ASME durNAL oF AppLiep  Well number(2) and observe Calladine’s relati¢8). For a class
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Julyof tensegrity modules with “discrete” bars, the total number of
2, 1999; final revision, May 6, 2000. Associate Editor: R. C. Benson. Discussion fiodesny is two times the number of bars. Both the spherical

the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departi : ; ; _ : _
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, a’r?(??fsegrlty module in Flg.(ﬂi) and the two Stage tensegrlty mod

will be accepted until four months after final publication of the paper itself in théjle in Fig. 1(b) consist of six bars and 24 cables, im#}l:: 12 and
ASME JOURNAL OF APPLIED MECHANICS. ng=30. The Maxwell numbeMx=ng—(3ny—n¢) with nc=6

which is referred to as the Maxwell number in this paper. Ma
well observed that iM,>0, truss structures were redundant o
statically indeterminate. IM,=0, trusses were statically determi-
nate. If M,<0, trusses becamékinematically indeterminaje
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Ne

D ow© . [M@WE + p© ]+ sw-f=0. (4a)
e=1

In (4a) Sw denotes virtual nodal velocityy is the nodal accelera-
tion, M(® and p(e) denote, respectively, the element mass matrix
and the element internal force vector due to the Cauchy axial
normal-stressry; :

1 213 s
M©®=—(ml)® , 4b
gm0 (4b)
-g (e)
10 p(e)E{ g) (01A)'®, (40)
wherem,, |;, andA; are, respectively, the mass per unit axial
6 length, the element length, and the area of cross section attime

I3 denotes the 3 identity matrix, andg®(t) is the current
direction cosine of elemerte).
A relationship between the global and lo¢alemental velocity

3 1 components for elemen(e) is established by a Boolean map
Z Lg®, an 6xny matrix, between the global nodal velocity, an
XXJ nyX 1 column matrix, and the nodal velocity® of element(e):
{b) y w® =L g®w, (53)
Fig. 1 (a) A six-bar spherical tensegrity module; (b) a two- &N(e):Lg(e)é\N. (5b)

stage tensegrity module with three bars at each stage ) .
By assembling4a) for global degrees-of-freedom by usiriga,

5b), the equations of motion for the current configuration are ob-

of the modules becomed x=0. Therefore, from Calladine’s re- tained(see for exampl¢17]):
lation (3) they have the same number of prestress modes and MV + p(t) —f(t) =0, (6a)

mechanism modesg.e., ng=n,, . ) )
whereM andp are the global mass matrix and the global internal

2 Summary of Nonlinear Equations of Motion force vector
In this section, nonlinear equations of motion for elastic truss ne

structures under large deformation are summarige€]). A mo-
tion of a truss structure withy nodes in Euclidean spad®® is

described by the nodal coordinatét) with respect to an inertial

Cartesian coordinate systgmy ,X»,X3} and timet. By employing

a finite element kinematical representation, nodes of the structure

MEE Lg(e)TM(e)Lg“’), (6h)
e=1

Ng
psEl Lg(e)Tp(e)_ (6c)
o=

are identified by using both the global node numbers and local .
elementgl node numberg[13,17). The global node numbers, Letts(t) ﬁenotﬁ] tk:enExtl.c?rl]umn.n??trlx of /tAhe(e()ele?ent(Afg)rce
1,2,... ny, identify the nodes of the entire truss structure, Whi%ﬁg (06rc\)/v tt?(seeiente(ranirlnf?)rr]césve; aXIig eircrgs(}sle([j) as' rom
local node numbers and 2 identify the end nodes of each truss ' o P
element, as illustrated in Figs. 1 and 2. Truss elements are iden- p(t)=A(t)s(t), (7a)
tified by element numbers 1,2. . ,ng in parentheses.

In a finite element description, the variation of the velocity fiel
v in the axial§;-direction in each element is linearly interpolated A=|a; ay--a, |, (7b)
by element nodal velocities, as illustrated in Fig. 2. Let the nodal F
velocity be denoted bw, anny X1 column matrix, and the nodal o Lg(e)T[ ,g}<e>

avhere

velocity of element(e) by w(®, a 6x1 column matrix. When a (70)

truss structure is subjected to the nodal foi@é the principle of

virtual velocity yields([18]) For initial equilibrium analyses, Eq$6a) and (7a) at a natural

configuration, denoted by timee=0, are utilized:
A(0)s(0)=f(0), (8)

/'O.“A’ (G +A0)g in which the initial direction cosing(®(0) is used in(7c). By
A/@ applying the singular value decompositionA@0), prestress and
-0, 40) g infinitesimal mechanism modes are computed by MuraKasi.

\% 491 ,t) w, @ In order to investigate the stiffening effect by a prestress mode,
natural frequencies, and corresponding mode shapes, the equa-
tions of motion(6a) are linearized at a prestressed configuration,
denoted also by=0. Let Young’s modulus, the area of cross
section, the element length, and the second Piola-Kirchhoff stress
at the prestressed state be denoted, respectivelY, by, |y,
andS;41(0) (= 014(0)). In terms of the nodal displacement vector
O d and the nodal acceleration vectrthe linearized equations of

Xy motion become

Fig. 2 Kinematics and kinetics of a deformed truss element M d+Kd=f(t), (9a)
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where the symmetric tangent stiffness matix is decomposed

z
into the initial stiffnesK,, employed for small deformation truss 4 I
analyses withtG(®=g®(0), and theprestress stiffnes as \\ 300 b
>

Ki=Ko+Ksg, (9b) hi2 202

in which _bor
\ 2 ( % 0)
S o 0
K0521 Lg©'KELg®, (%)
Py
X / b2 Y
Ne
Ke=2, Lg¥KELg®, (o) 1
e=1 h h
o ?)
o[ YoRo|®[ GGT  -GGT|®
Ky'= T T ) (%) Fig. 3 Nodal coordinates of the six-bar spherical tensegrity
lo -GG GG module
S1(0)A\ @] 13 —I
K(Se)E(L)O) 3 3 (9f)
IO _|3 |3

By extremizing the cable length with respecthpi.e., dl/dh

It is observed that the prestress stiffening9) is “isotropic” at =0, one findsh=b/2. Since the elements of the initial equilib-
each node(In large deformation analyses of prestressed networksym matrix A(0)=[a;;] are functions ofl(h), dl/dh=0 is
Argyris and Scharpf12] predicted isotropic stiffening due to pre-equivalent to satisfying

stresses$.In the sequel, the above equations will be utilized to

characterize static and dynamic response of tensegrity modules. Q(h)=detAT(0)A(0))=0. (11)
_ Itcan be easily shown th&t"(0)A(0) is positive semi-definite,
3 Initial Shape Finding Q(h)=0. Further, the rank oA(0) is ng, except for the cases

P . - hen the tensegrity condition is satisfiga., ng=1. Therefore,
The initial geometry of tensegrity modules was originally found” 2 ~ . S N
by the ingenuity of pioneers, such as Snelson and Fuller. Elemé&) takes the minimum valueQ(h) =0, if and only if dQ/dh
lengths and nodal coordinates were later justified analytically b_yo-
considering initial equilibrium Eq(8) with f(0)=0. An obvious - g
dQ_ E Cof dCij dl _
dh | &, Cote) g1 gn

here Cof€;;) denotes the cofactor af;=ay;a,; with summa-
n over k=1,...ny. For the tensegrity module,,

condition for tensegrity modules is the existence of nontrivial pre-
stress modes(0) with tension in cables and compression in bars.
This condition is referred to as the “tensegrity condition.” Tarn|
[20] analytically constructed equilibrium equations and obtain
the tensegrity conditions by using local coordinate systems for = o T B )
cyclic cylindrical truss structures. By extremizing the length of g rankA(0)=neg—1 andns=dim(nulliA'(0)A(0))=1, there S
single family of cable elements, for example vertical cables, aid least one nonzero cofactor pf;;]. Therefore,dQ/dh=0 if
prescribing remaining geometrical parameters, T¢BiH found and only |fd|_(h)/dh:O. . .

the twist angle for regular cylindrical tensegrity modules. Tobie’g. By usingh=Db/2 and computing both nodal coordinates and the
work was introduced by Kenné#] in his book. The equivalence irection cosines of the bar and cables connected to the node, one

between Tobie's and Tarai's conditions was proven by ME&n Write equilibrium Eqsi8) at node 3. The prestress mosi®)

0, (11b)

rakami[19]. relates element forces in the bgyand cables; as follows:

At this moment, there are two methods available for finding 1
element lengths and nodal coordinates of existing regular tenseg- Se=——=5. (12)
rity modules:(i) by extremizing the length of a single family of G

cable elements for a prescribed set of geometrical parameters ang
(i) by analytically solving reduced equilibrium equations. In thi
section, the former method is applied to a six-bar spherical tens
rity module in Fig. 1a). The latter method is applied to a two

two-stage cylindrical tensegrity module with three bars at
Rach stage is shown in Fig(k). Skelton and Sultafs] obtained
%R equations of motion and tensegrity conditions for modules
A . A “consisting of “rigid” bars and cables with negligible mass. They
stage cylindrical tensegrity module in Figlol . demonstrated unprecedented possibilities offered by controlied
A Cartesian coordinate systef®, y, Z} IS §elected .W'th the smart tensegrity structures. The structure in Fidp) 1s built by
origin at the center of the sphere which circumscribes all thg, ying two three-bar cylindrical moduléd]). Figure 4a) illus-
nodes 1-12. Due to the spherical symmetry, it suffices (0 defgf3iaq the connections of bars and cables by using a developed
mine the coordinates of nodes 1, 2, and 3, illustrated in Fig. 3. T Snnectivity diagram of the two-stage tenseg$,22)). In the
not(_jal chool;ditnates are co_mplcfetely d(lelt?rngined ir}t:lerlms Ot;]the Se'ﬂ@hre, bold lines indicate bars and thin lines indicate top, base,
ration etween a pair or parallel bars wi ength as. saddle, and vertical cables. Dashed lines represent diagonal
1(b/2,7/2,0),2(=b/2,h/2,0),3(0b/2,h/2). Let the length of cable opieq 1 order to define nodal coordinates, a Cp:artesian cogordi-
elements be denoted yFor a _prescrlbed bar length the cable nate systenfx, y, z} is selected with the origin at the center of the
length of the element connecting nodes 1 and 3 becomes a fufge equilateral triangle defined by nodes 1, 2, and 3, also denoted
tion of the parametef: by 1-3. Thex, y-plane coincides with the plane of the base tri-
1 angle 1-3, and cablél, 2) is parallel to thex-axis. Thez-axis
(=53 b2+ (b—h)2+h?. (10) connects the centers of the base and top equilateral triangles. The
top view of a two-stage tensegrity is illustrated in Figbyby
Spherical tensegrity modules built with arbitramycollapse indi- using equilateral triangles formed by nodes at equal elevations.
cating that inA(0) all columns are linearly independent. Sphericalet the radii of the circles circumscribing the base triangle 1-3
tensegrity modules can exist without external supports if the cand the top triangle 10-12 bg. The bars of the base module
umns of A(0) become linearly dependent and E§) with f(0) consisting of nodes 1-6 connect nodés4), (2, 5), (3, 6) and are
=0 has a nontrivial prestress mod@). twisted in the counterclockwise direction byr2B+«. The pa-
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12 10 11 12 After finding the initial configuration, a nontrivial prestress

\ \ \ modes(0) can be computed from the reduced equilibrium equa-
3 7 8 tions as follows:
6| / ;6 1+
LNYLT So Sh Y (w ) Y 'm
—=——={——sin ——a|+———1, 14a
; ; ; lo bD [ v \6 2v3 ro} (1)
(@ 1 2 3 1
S, Sp T .
y l—:—w{ysm(g—a -‘rSIna/}, (14b)
S; S s, V3(1- T
7 Si_%_ S v3dTy) sin(——a>, (14c)

5 3 ls s bD’ v 6
V/ 117 4 Sa_ Sp | )
Ve > X E——W\/?sm(g—a, (14d)
1& where
9

aw
(b) 6 D’Esin(g—a +ysina. (14e)
Fig. 4 (a) A developed connection diagram of the two-stage The parameters that satisfiL3) yield an admissible prestress
tensegrity module; (b) a top view of equilateral triangles of the mode with tension in cables and compression in bars.
two-stage tensegrity module A key step in obtaining a reduced set of equilibrium equations

is to incorporate the cyclic symmetry conditions and to impose the
constraint of the same element forces due to prestresses on the

rametera is referred to as the additional twist angfd]). The top Same family of elements. o .
module 7-12 is an upside-down version of the base module 1—6!N the initial shape finding, Eq11a) is imposed on the initial
The bars of the top module connecting no@&s10, (8, 11, (9, geom_etry for the eX|st_ence ofa pres_tress mode. It is |n_struct|ve to
12) are twisted in the clockwise direction byr23+a. The top €xamine the quadratic form associated WAR(0)A(0) in the
module is stacked on the saddle cables of the base module in s¥@ftor spacdk"™ of element internal forces(0). By using(8), the

a way that nodes 7, 8, and 9, respectively, rest in the middle @fadratic forms’AT(0)A(0)s is identified to bef-f the square
saddle cable&, 5), (5, 6), and(6, 4). The diagonal cables connectlength of the nodal force vector iR" and is positive semi-
nodes(1, 9, (2, 7, (3, 9, (12, 6, (10, 4, and(11, 5. definite. The conditior{11a) only assures the existence of a pre-

All nodal coordinates can be analytically expressed for the prstress mode. Therefore, after computing a prestress mode, one has
scribed bar lengtiy, the radiusr of the top and base circles, theto check the admissibility of the prestress mode with tension in
radiusr, of the circumscribing circles of triangles 4—6 and 7—9¢ables and compression in bars.
the additional twist angler, and the overlap ratigr between the
triangles 4—6 and 7-9 in elevation. If tiecoordinate of the
triangle 4—6 is denoted by (b, «a,rg,r ), thez-coordinate of the i :
triangle 7—9 becomes (1vy)h. (The nodal coordinates and ele-4 Infinitesimal Mechanism and Prestress Modes
ment lengths are presented in the Appendihe previous ex-  Once an initial geometry is found, infinitesimal mechanism and
tremization method does not work here since there are two uprestress modes can be numerically obtained by performing the
known cable lengths. A remaining method is to construct tHéngular value decomposition on the “full” initial equilibrium
initial equilibrium matrix of (8) by analytically calculating the matrix A(0) in (8) ([19]). The matrixA(0) defines a linear trans-
initial direction cosineG of each element. By virtue of the cyclic formation from the vector spad®’e of the element internal forces
symmetry, it suffices to examine the equilibrium equations at twoand elongation to the vector spacR" of the nodal force$
representative nodes 1 and 9 by incorporating the constraint thad displacements.
the elements in the same family possess the same prestresses. ledr small deformations, Clapeyron’s theordfior example,
the element forces due to prestresses of bars, top and base caBlekolnikoff[24]) states that the work done by surface traction and
vertical cables, and diagonal cables be denotes, by, s,, and body forces acting through the displacements from the natural
Sq, respectively. Saddle cables are divided into two groups: groepnfiguration to the deformed configuration is equal to twice the
| consisting of cable$6, 9), (4, 7), (5, 8 and group Il consisting strain energy of the body if it obeys Hooke’s law. The theorem
of (9, 4), (7, 5 and (8, 6). Their element forces are denotedyields at the natural configuration, denotedtly0:
respectively bys; ands,. With the above simplifications, the
equilibrium matrix of(8) reduces to a & 6 matrix. By setting the <f’d>"v:<se>ﬂe' (15)

determinant ofA(0) to zero, the following characteristic equationBy substituting the linear transformati@8) into (15), one obtains
in terms ofr, /ro, a, andy is obtained: the adjoint transformation oA(0) from R™ to R as (see, for
- ) y(y+1) example, Naylor and SeJR5]):

L b Tpv v (13) (A(0)sd)y =(sAT(0)d),. (16)

A reduced set of initial equilibrium equations is presented in thenis definition of the element elongatianagrees, as it should,

Appendix. The above analytical result agrees with the numericglin that obtained from the small deformation finite element
examples presented by Skelton and Sul&nand Sultar{23]. I gnalyses:

order to find a set of nodal coordinates, one has to prescribe two

parameters out off ,,/rq,«,y} and solve(13) for the remaining e=AT(0)d. a7)
parameter. For a prescribed Eq. (13) describes a line in thg, B
y-plane. Let the lengths of top and base, vertical, saddle, ag
diagonal cables be denoted by, I,, Is, andly, respectively.
The cable lengths were computed and shown in the Appendix. Ng=nNg+rya, (18a)

M'm

investigating the dimensions &"v and R"e, Calladine[11]
served
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Ny=nNy+ra, (18)

wherer p=rankA(0),ns=dim(nullA(0)), the number oprestress
modes, andny,=dim(nullAT(0)), the number ofinfinitesimal
mechanism modes. Frof2) and(18a, 18b), Calladine’s relation
(3) was obtained. A physical interpretation of the null and range
spaces ofA(0) andAT(0) was presented by Pellegrino and Cal-
ladine[26]. Prestress modes span the null spac&@), while
mechanism modes span the null spacé\560).

In order to obtain base vectors 8" and R"E, the singular
value decomposition theorertior example, Noble and Daniel
[27]) is utilized. It is known thainXn symmetric matrices have
real eigenvalues and orthonormal setsnogéigenvectors. There-
fore, AT(0)A(0) andA(0)AT(0) have, respectivelyng and ny
eigenpairs. Further, det{(0)A(0))=0 and detf(0)AT(0))=0
indicate that the eigenvalues are positive semi-definite. There are
ra(=rankA(0)) positive eigenvalues:o?=o03= .. ->Ur2A>O
where positives’s are called the singular values 8f(0). The
ordered eigenpairs in the decreasing singular values satisfy

AT(0)A(0)s=0?s, i=1,2;,ng, (19)

Fig. 5 (a) An infinitesimal mechanism mode of the spherical
tensegrity module; (b) an infinitesimal mechanism mode of the
two-stage tensegrity module

A0)AT(0)d;=0s), j=1,2;--ny. (1%)

In R"€S=[s;s,...5,] is an orthonormal basis, whild
=[d,d, ... dnv] is an orthonormal basis iR"v. By using the
ny X ny, orthonormal matrixD and theng X ng orthonormal matrix nism modes with zero element elongation exhibit a two-orders-of-
S, A(0) is decomposed into magnitude softer response than the deformation modes with non-
- zero elongation in(17).
A(0)=DXS, (208) , .

5 Stiffness of Prestressed Tensegrity Modules

For a prestressed tensegrity module, static equilibrium equa-

tions for small deformations are obtained frai®a) with d=f

¢, O - 0 O] =0. The tangent stiffnes&; was decomposed into the initial
stiffnessKy, employed for small deformation truss analyses, and

whereS is anny X ng matrix with singular values on the diago-
nals of the firstr 5 rows:

0 o 0 the stiffnesK induced by prestresses, as showri9h). For the
: two tensegrity modules in Figs(d) and(b), it can be numerically
i ~— T = =
S_|o o 0 o, 0| (200) shown that det(;)>0. Sincee=A (O)dnv 0 andKOng 0, the

stiffness of an infinitesimal mechanism modg\,/ in D of (20a), is
induced only byKg. Further, Eq.(9f) reveals that the prestress
: : : : : stiffness at each node is “isotropic” since the nodal stiffness is
0o o 0o o expressed by identity matricégl2,16). It is noted that the as-
L . sumption of “moderate rotation” is economical and popularly
The eigenvectors; corresponding to zero eigenvalues (a8a) employed for truss structures. However, due to an inconsistent
are prestress modes and span the null spad®(0j, while eig- linearization, the assumption of moderate rotation incorrectly pre-
envectorg; corresponding to zero eigenvalues(d®b) are infini-  dicts “anisotropic” prestress stiffening instead of “isotropic”
tesimal mechanism modes and span the null spaéd (). The stiffening for tensegrity structures with infinitesimal mechanism
eigenproblems of19, 1%) can easily be solved by using eitherMdes.
Jacobi’s method[13]) or Lanczos’ method[17]). For static char-
acterization of tensegrity modules, only eigenvectors corresporfil- Modal Analyses
ing to zero singular values are required. Sid&=0 and ng Dynamic characterization of tensegrity modules involves modal
=1 for the tensegrity modules in Figs(al and (b), Calladine’s analysis at a “prestressed configuration.” Consider a small har-
relation (3) yields ny = 1. Therefores,_is a prestress mode andmonic motion of the formd=d exp(wt) in (9a) whered is the
dnV becomes an infinitesimal mechanism mode. One can validaeplitude andw is the angular frequency. The standard finite
the numerical values ig,_ by comparing them with the analytical element eigenproblem is obtained fr¢8a) with f=0 as
prestress mode ifll4a)—(14d). d= w2Md
Figures %a) and (b) illustrate the infinitesimal mechanism Kd=w"Md. (21)
modes of the spherical tensegrity module and the two-stagjge above eigenproblem can be solved by either using the Lanc-
tensegrity module, respectively. In the figures, dashed lines shg@s method[17]) or the subspace iteration methdd3]).
the undeformed configurations. The spherical module in Rig. 5  For the numerical examples, steel bars and cables with Young’s
exhibits a spherically symmetric, radial deformation mode. ThaodulusY,=200 GPa and mass densjiy= 7860 kg/ni are con-
two-stage module in Fig.(B) shows an axially deforming mode sidered. The diameters of bars and cables are, respectively,
with the equilateral triangles 4—6 and 7—9, shown in Fign4 10 ?2m and 10%m. The first three natural frequencies of a
rotating in the same direction. This implies that top bars and basgherical tensegrity module witi=2m are shown in Table 1 for
bars are rotating in opposite directions with respect toztheais. increasing prestresses. The natural frequencies of a two-stage
(A snap shot of Fig. &) indicate an axially compressed state.  tensegrity module with the geometmy=r,=h=1m and y
the next section, it will be shown that these infinitesimal mecha=1/2 are shown in Table 2. The first natural frequencies are an
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Table 1 Natural frequencies of the spherical tensegrity mod- FIN]

ule for various prestress levels A
e
Prestress of 1st mode 2nd mode 3rd mode 0.3x10°Pa] L/
bars[MPa] [Hz] [Hz] [Hz] o008 /17
0.01 0.2056 10.62 16.22
0.1 0.6502 10.62 16.22 2N -
1.0 2.056 10.63 16.23 -0.002 o 0.002
2.0 2.908 10.63 16.23 |
3.0 3.561 10.63 16.23 :
4.0 4.112 10.64 16.24 o 0!
Table 2 Natural frequencies of the two-stage tensegrity mod- (a) 001
ule for various prestress levels N]
Prestress of 1st mode 2nd mode 3rd mode 51
bars[MPa] [HZ] [HZ] [Hz] r
[ bar
0.01 0.1819 20.93 20.93 1
0.10 0.5753 20.94 20.94 S~
1.00 1.819 20.96 20.96 ™ | diagonal
2.00 2571 20.99 20.99 Q5L
3.00 3.149 21.02 21.02 \ [ top
4.00 3.635 21.05 21.05 F ~vertical -
Ll z|m

0002 0001 0 0001 0002
(b)

order of magnitude smaller than those of higher modes. In the tw@. 6 (a) Load-displacement relation of the two-stage tenseg-

modules, the first modes are indistinguishable from the infinitegity module; (b) element forces—load-point displacement rela-

mal mechanism modes, illustrated in Fig&)5and (b). As shown tion of the two-stage tensegrity module

by (9e) and(9f), the stiffness of the first modes is on the order of

prestress, while that of the higher order modes is on the order of o
Young’s modulus. increment and the initial internal force due to prestresses reaches a

critical load P, of the bar, buckling could take place. It is noted
: : : . that the response of tensegrity modules witx>0 do not ex-
7 Nonlinear Stiffening Effect and Critical Loads of hibit the hardening response shown in Fig&@)6and &b). For
Bars example, double-layer tensegrity grids wihx>0 exhibit “lin-
In this section, a quasi-static load-displacement relationshipéar” response until some bars buckle or some cables slack
investigated by using the updated Lagrangian finite element cod8.31]).
which solveq6a). Newton’s method was used with the linearized ) ) )
equation at each load incremefEquation(9a) was linearized at 8 Tensegrity Configuration Spaces

t=0.) Figure Ga) illustrates the vertical load and load-point dis- |n constructing tensegrity structures, it is not possible to build
placement relation of the two-stage tensegrity module. The sag@m without initial geometrical imperfections. Bars and cables
vertical load is applied in the-direction at each top node. Themay not have the exact intended lengths computed from the initial
solid lines are the predictions of the finite element code at variogguilibrium analyses. Nodes may not be placed precisely at speci-
initial prestress amplitudes. The initial tangent stiffness near tigaq positions. Further, designers may wish to move nodes to
origin of Fig. 6a) increases linearly with increasing prestress, aseighboring locations to improve structural functions or architec-
predicted by(9f). Further, the figure illustrates that the lineakyra| appearances. Tensegrity structures with a Maxwell number
range is extremely small. If bars do not buckle, the loadyyx<0 collapse with minute disturbances if the tensegrity condi-
displacement relation exhibits hardening response. As the logghs are violated. The initial geometry R™ must satisfy the
increases, the asymptotic stiffness converges to that obtained froracteristic Eq(11a) that assures the existence of a prestress

(99 With the direction COS“”‘?S computeq for.the current deformerqodes1 in the element force vector spa&&e. In the configu-
configuration. For the loading shown in Fig(af the element ] E n ; )
forces are plotted in Fig.(B) as a function of the load-point fation spac&k™, Eq.(11) defines a hypersurface and imposes a

displacement. The cable tensile forces quadratically increase wifiplonomic constraint with respect to adjustable nodal coordinates.
out slacking with the vertical load in both tension and compre&r the spherical tensegrity module, the hypersurface at the neigh-
sion. In the figure, the absolute value of bar compressive forcel@hood of node 5 is drawn in Fig. 7 by fixing remaining nodal
plotted. Skelton and Adhikaf28] first reported a hardening-type co0rdinates(The dimension of the module is the same as that
axial load-displacement relation for a two-stage tensegrity moBresented in Section 6The ideal position of node 5 is indicated
ule. In addition, they reported cable slacking for the bending dBY the base point of the grad vector. The shaded hypersurface
formation of a two-stage tensegrity. indicates admissible nodal positions of node 5. Figure 8 |IIustrat§s
For tensegrity modules with infinitesimal mechanisms, thée hypersurfaces for node 9 and node 10 of the two-stage cylin-
load-displacement relation is characterized by a nonlinear ha#tical tensegrity module by fixing the remaining nodal coordi-
spring. Due to the hardening response of tensegrity modules, fiies. For example, the hypersurface of node 9 was computed by
necessary design consideration is to prevent both tensile failurefigfng all remaining nodal coordinates, including those of node 10,
cables and buckling of bars. The buckling of bars is a bifurcatici the ideal initial configuration. The ideal positions of node 9 and
type, and a post-buckling behavior is known to be “imperfectiod0 are indicated in Fig. 8 by the base positions of gpadectors.
sensitive” ([29,30). Therefore, a critical load of bars should beFigures 7 and 8 illustrate the existence of connected admissible
determined by either conducting experiments or performing nonedal positions in the neighborhood of ideal nodal positions. The
linear finite element analyses of column buckling by imposinfigures also indicate the prohibited directions indicated by @ad
axial compressive forces predicted by the updated-Lagrangimaormal to the hypersurfacglla). Moving a node to a position
truss finite element code. When the sum of the element forcennected to an ideal or current nodal position on the admissible
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tation of the Maxwell numbe(2), (ii) analytically finding initial
shape and an admissible prestress m@de,numerical computa-
tion of prestress and infinitesimal mechanism modis, modal
analyses at a prestressed configuratiorn, computation of load-
displacement curves for the determination of a critical load of
bars, and(v) the computation of hypersurfaces in the configura-
tion space.

It was found that all infinitesimal mechanism modes were iso-
tropically stiffened at each node by a single prestress mode, as
shown in (&). Further, if bars are properly designed against
buckling, tensegrity modules with infinitesimal mechanisms ex-
hibit stable hardening load-displacement relations.

Fig. 7 The configuration space near node 5 of the spherical
tensegrity module
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Appendix

Reduced Equilibrium Equations for a Two-Stage Tenseg-
rity Module. In order to obtain both prestress modes and the
characteristic Eq(13), the initial equilibrium equations are de-
rived for a two-stage cylindrical tensegrity module with three bars
at each stage. The following parameters are used to analytically

9-1
yi describe nodal coordinates:
0105 b: the bar length;

node 9 ro: the radius of the circumscribing circles of the equilateral tri-
) ] ) angles 1-3 and 10-12;
Fig. 8 The configuration spaces near node 9 and node 10 of rn: the radius of the circumscribing circles of the equilateral tri-
the two-stage tensegrity module angles 4-6 and 7-9;

a: the additional twist angle;

o " i v. the overlap ratio in elevation.
hypersurface only satisfies the condition for the existence of'fal ther. implicity of notati th dinat f h
prestress modeg(0) that satisfiesA(0)s(0)=0. In addition, the urther, for Simplicily of notation, the, y-coordinates of eac

prestress mode must be admissible with tension in cables i€ are expres;ed by usifmplex varla_blie phasor notation,

compression in bars. W ile the zcoordinate is expressed by using thg standard Carte-
In order to show that there exists such an admissible prestr% n component. For examp_ltieq;/et;h,ey, e_tndz—coordmates of node

mode for small change of nodal coordinates,, Murakami[19] are expressed asroe ""0) instead of (o cos/6,

performed a perturbation analysis in which the initial equilibriunt "o Sin76,0). With this notation, the nodal coordinates are ex-

matrix was perturbed from the ideAl,=A(0) to A=A,+eA, Pressed as follows:

wheree is a small real number indicating a norm &€ It was 1(ree'”™8.0), 2(r,e”'™5,0), 3(rye'™20),

shown that the resulting changes in prestress and infinitesimal ) i _

mechanism modes ifl9%, 1%) are also on the order of The  4(rp€ "™ h),  5(r (™" @ h), 6(r 7™+ h),

above existence of admissible prestress modes is shown only for

i(m/6+ ) _ i(57/6+ @) _
small nodal changes based upon local analyses. 7(rmef (1=yh),  8(rye'®™7 (1= y)h),
For redundant tensegrity structures witQ=n,, and Mx>0, 9(r.el=m2+a) (1_ 1 )n 10(r-e~ ™2 (2= 4)h
infinitesimal mechanism modes do not exist due to Calladine’s ("m _ (1=nh), 1K 0 (2=,
relation (3) (see Section ¥ The quadratic form associated with 11(rpe' ™ (2= y)h), 121> (2—y)h).

AT(0)A(0) becomes positive definite instead of positive sem
definite. The redundant tensegrity structures can take any confi
ration as long as connections between bars and cables do
change.(A continuous change in nodal coordinates of tensegrity lo

structures without altering connections involves “algebraic topol- —=V3, (Ala)
ogy” dealing with simplicial complexegfor example, Frankel

[32]), which is beyond the scope of the present paper. |

v b\? m [T
I'_: I'_ 72\/§r—sm §+a , (Alb)
9 Concluding Remarks 0 0 0

A set of characterization procedures was presented and iIIus-'_s: \/(1— 2) "m
trated for a six-bar spherical tensegrity module and a two-stager YUY
cylindrical tensegrity module. The procedures inclu@ecompu- (Alc)

I:Iaving all nodal coordinates, it is a routine calculation to find
%hllgtment lengths:

2
r r T
= ]—Z—m[COSa—y(Z—y)sin—+a
Mo lo

= , (ALd)

Iy b
SN

Journal of Applied Mechanics JANUARY 2001, Vol. 68 / 25

2
+y(2— y)[l-i-



T
g +al. (Ale)

h_\/(b
o Virg

In what follows, the initial equilibrium Eq(8) at nodes 1 and 9

2 2

rm rm .

—1—-|—| —2—sin
o )

with f(0)=0 are presented in vector form by expressing directio
cosinesG=g(0) in terms of nodal position vectors and elemen

lengths. By utilizing the connection diagram in Figa} the ini-
tial equilibrium equation at node 1 is expressed as

So s, Sq
(X=X +Xg—Xy) T +(Xg—Xq) Tt (Xg—Xq) T,
v

Sb
+(X4_X1)E:0, (A2)
wherex; denotes the position vector of node
The equilibrium equation at node 9 becomes

Sy

S S
(X10~ Xo) | T

Sy 1 2
+(X1—Xg) ™ +(Xg—Xg) 7=+ (X4—Xog) |
v d s s

S
+ (X X0) 1 =0. (A3)

Equations(A2) and (A3) could be written in matrix form to yield
the reduced initial equilibrium equatioA&(0)s(0)=0. However,

in order to expedite subsequent analyses, element internal for

are combined with element lengths as
A’(0)s'(0)=0, (Ada)

where

T

So Sy Sq S1 S2 Sp (Adb)

lol, Tals T b
and the elements o’ (0)=[a’;;] are defined as follows:

, 3V3 , V3 T
a11=7r0, a12=7r0—rmco g+a

s'(0)=

V3
ai3=?r0+rmsina,

oAl ’ _‘/3 T
ap,=a;s=0, ajg=—5ro+trnco§ —~+a

2 6 '
, _3 , _rO . T , _rO
an=5l0,  Ap=75 ~ImSin E+a , 8= 5 ImCOSa,
! ! ’ ro H ™
as,=as=0, a26=5+rmsm —g+a ,

a5=0, agp=h, axp=(1-yh, agy=azx=0, azg=h,

’ _O ro_ H ’ __‘/3 _ H
as=0, Q= —"I'nSiNa, azz= 7I’0 'mSina,
, NG
ayu= — Iy SN §+a s
T
r . r B
a45—rm5|n(§—a , a46——?r0—rmsma,

ag,=0, ag,=—ro+rycosa,

)

T
+r,C0Sa, ai,=rq,sin=—al,
2 m 54 m (6 )

|
As3=

)

5> TImcosa,

[
» g™

’ H ™
8g5=ImSiN &+
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ag=0, ag=h, ag=—(1-yh, ag=ag=vrh, ag=h.
(Adc)

When a nontriviak' (0) exists, the determinant &f (0) becomes
ﬁero.(The resulting characteristic E413) may be obtained by
l,[Jsing a symbolic manipulatgrin what follows, an analytical
method is used to obtain both prestress modes and the character-
istic equation by knowing that a nontrivial solutieg(0) exists

only when rank ofA’(0) reduces from six to five. Therefore, Egs.
(Ada) can be solved uniquely fa /g, s, /1, , Sq/lg, S1/ls, and

s,/ls when sy /b is prescribed by using the first five rows of
(Ada). The last row yields the consistency condition, which be-
comes the characteristic EA.3).

In order to eliminatesy /14 from the first and second rows, one
subtracts/3 times the second row from the first row. The resulting
equation and the third row can be used to solvedpt, and
Sq/lg, as shown in(14b) and (14d), for a prescribeds,/b. By
using the second row gfAda) with (14b) and (14d), one solves
for s/l to find (14a). The fourth and fifth rows ofA4a) are used
to find s; /1 ands, /I in (14c). Since there are only five linearly
independent rows ifA4a), the sixth row is linearly dependent of
the first five rows. Therefore, the sixth row furnishes a consistency
condition that yields the characteristic H4.3). The above ana-
lytical procedure can be easily applied to two-stage cylindrical
tensegrity modules with m-bars at each stage and n-stage cylin-
gggal tensegrity modules with m-bars at each stage.
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Nonlinear Stability,
Thermoelastic Contact, and the
Barber Condition

J. A. Pelesko

School of Mathematics, The behavior of a one-dimensional thermoelastic rod is modeled and analyzed. The rod is
Georgia Institute of Technology, held fixed and at constant temperature at one end, while at the other end it is free to
Atlanta, GA 30332-0160 separate from or make contact with a rigid wall. At this free end we impose a pressure

and gap-dependent thermal boundary condition. This condition, known as the Barber
condition, couples the thermal and elastic problems. Such systems have previously been
shown to undergo a bifurcation from a unique linearly stable steady-state solution to
multiple steady-state solutions with alternating stability. Here, the system is studied using
the asymptotic matching techniques of boundary layer theory to derive short-time, long-
time, and uniform expansions. In this manner, the analysis is extended into the nonlinear
regime and dynamic information about the history dependence and temporal evolution of
the solution is obtained.[DOI: 10.1115/1.1345699

1 Introduction While the model studied here differs from the model studied in
. ), only in the use of the Barber condition, the method of analy-
The analysis of thermal contact problems has revealed a weé differs significantly. In particular, here we use the asymptotic

of interesting phenomena. Beginning with J. R. Barber in 19 ; . - g
([1]), who pointed out that the solution of such problems pos%—\Eﬁtchlng techniques of boundary layer theory to derive short
0

certain difficulties, and continuing to this day, numerous resear
ers have turned their attention to these problems. Barber obserg?
that the classical assumption of perfect insulation during a se@

e, long-time, and uniform asymptotic expansions of the solu-
. In our prior analysis we used the method of multiple scales,
o-timing, to accomplish similar goals. The switch in tech-

h ues is not merely a matter of taste. Rather, any attempt to apply
rated phase and perfect thermal contact during contact led to m iltiple scale techniques to the model considered herein will soon

els with solutions which were unacceptable on physical groun counter algebraic difficulties. That is, such an attempt becomes

Introducing a pressure and temperature-dependent boundary Qi ically intractable. However, as is shown, boundary layer

dition, which would subsequently become known as the Barbg{y v may pe applied with little difficulty. This not only allows

condition, he allowed for a smooth transition between the insis 1o carry out the analysis for the one-dimensional rod model

lated and perfect thermal contact states. Studying a linearized V&t the Barber condition. but gives us hope that similar tech-

sion of a thermal contact problem which included the Barber cofq es will yield a nonlinear stability theory for more complicated

dition, he showed that the paradoxes inherent in simpler models, sidimensional problems.
could be avoided and physically relevant .soluti.ons repovered. We begin in Section 2 by formulating the governing equations
In 1980, Barber, Dundurs, and Comninp2] investigated @ o oyr model. We make the standard assumption that quasi-static
thermal contact problem using the Barber condition in a ongncoupled thermoplasticity is valid and use the Signorini contact
dimensional model of a thermoelastic rod. Imposing a temperatyigngition to capture periods of separation and contact. We impose
gradient across the rod, they demonstrated that the system unge&-garber condition on the thermal part of the problem, leaving
went a bifurcation from a unique linearly stable steady-state SOy contact resistance function unspecified. A solution is con-
tion to multiple solutions. with aIterna}ing stability as the magnistycted for the elastic problem and the system of governing equa-
tude of the thermal gradient was varied. tions is reduced to a nonlocal and nonlinear heat conduction prob-
_Since that time, various authors have explored the Barber cQgm |n Section 3, we impose physically realistic constraints on
dition and its implications for thermal contact probleiti8,4]).  the contact resistance and develop a linear theory. We review the
While such _analyses ha_ve been extended to_multl_ple m_ate”ﬁﬁalysis due to Barbd®], and show that the system studied un-
([3,5,6)), various geometrie§ 7,8]), and to numerical simulations gergoes a bifurcation from a single linearly stable steady-state
([4]), most theoretical work to date has relied upon linear stability|ytion to multiple steady-state solutions. Finally, in Section 4,
theory. In a recent articl9]) we developed a nonlinear theory\e study the behavior of our system near the bifurcation point.
which described the history dependence and dynamics of ot is, we inquire as to what happens when the system is started
tions near the bifurcation point for a simplified model of a on€uearhy the now linearly unstable steady-state solution. Using
dimensional thermoelastic rod. Our model did not, however, iRy mptotic matching techniques, we incorporate the effect of sta-
clude the Barber condition. Since the Barber condition is Mu@jjizing nonlinear terms into our theory and obtain information
more physically realistic than the boundary condition used gyt the dynamics and history dependence of the solution. We
([9)), it is desirable to have a nonlinear theory for a model whicloy that as conjectured, the solution does indeed approach one

incorporates the Barber condition. We carry out such an analygisine stable solutions obtained in the linear theory.
here.

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF 2  Formulation of the Model
MECHANICAL ENGINEERS for publication in the ASME OURNAL OF APPLIED ) ] ) )
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept. We consider a one-dimensional thermoelastic rod of lemgth
24, 1999 final revision, June 26, 2000. Associate Editor: J. R. Barber. Discussiongiispended between two rigid walls as pictured in Fig. 1. We as-

the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departi ; :
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, arr%(iﬂlne that the rod possesses constant thermal and elastic material

will be accepted until four months after final publication of the paper itself in thprop?rtiesg is homOgen.eous and isot.ropic., and that uncoulpled
ASME JOURNAL OF APPLIED MECHANICS. quasi-static thermoelastic theory is valid. With these assumptions
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7 . )
| e uix=p | ocode-xmax s | agnazol @1y
% L and f [ j ]

% Thermoelastic Rod o(X,t)=—max ,ufolﬁ({,t)d{,O] ) (2.12)
% v Using these solutions, we may evallua;;ei.e.,

//// heldatTy n=o(lt)—u(lt)= —,uJO a(Z,t)d. (2.13)

Fig. 1 Sketch of the model geometry

Hence, we have reduced the problem to one&anly. We are
left with

96 %0

E=W 0<x<1

(2.14)

in mind, we formulate the equations governing the temperature

distribution, T, elastic displacementt’, and stressg’, within the

rod. In the dimensionless variables

T_TL

K

v

ozt XTT

these equations take the form

where here

and

96 3%6

= 0<x<1
gt oax?

J%u 30 0 L
—=u— 0<x<
a2 M ox

g 0 <X<
X K

9(01)=0
u(0t)=0

u<0
o<0
uo=0

at x=1

a6
R(7) 5(1,0: 1-6(1})

(2.3)

(2.4)

(2.5)
(2.6)

2.7)

(2.8)

xR(7)

a(Tg—TL), R(n)=

n=o(1t)—u(lp).

(2.9)

(2.10)

0(01)=0 (2.15)

90
R(7) 5 (L0 =1-0(L1) (2.16)

1
7)=—ML 0(¢,1d¢. (2.17)

3 Linear Theory

In order to proceed with the analysis, we must further charac-
terize the contact resistance functid®(z). We recall from the
definition of 7, Eq. (2.10, that »>0 corresponds to separation
from the wall, and that in this casgmeasures the size of this gap.
Physically, we expect the contact resistance to increase monotoni-
cally with gap size. On the other hangl<0 corresponds to con-
tact with the wall, and in this casg measures the contact pres-
sure. Here, we expect contact resistance to decrease
monotonically with increasing pressure. Further, contact resis-
tance must be a positive quantity and on physical grounds we are
led to expect thaR(#7) appears as pictured in Fig. 2.

With these assumptions aboBtin mind, we may investigate
steady-state solutions of the systétl4), (2.15, and(2.16. We
begin by setting the time derivative to zero in Eg.14), integrat-
ing the resulting ode and using the boundary conditions, Egs.
(2.15 and(2.16), to determine that steady solutions must have the
form

0* (x)=ax 3.1)

Note thatu may be interpreted as a nondimensional coefficient ¢ 8
thermal expansion or as a dimensionless measure of a therr
gradient in the problem, whil® is a dimensionless form of the
contact resistance function. In fad® may be thought of as a
variable Biot number, measuring the relative strengths of heg
conduction within the rod and *“convection” through the rod'sg
right end. The variabley is equal to the contact pressure durincg |
contact (7<<0) and the gap size during periods of separatign (°
>0). For a full derivation of the model above, the reader is re
ferred to([9]). As mentioned in the Introduction, the model above 2
differs from that in([9]) in that the boundary condition at the right
end of the rod in[9)) is replaced here with the Barber condition, *r
Eq. (2.8). The reader will also notice that in the above we hav
assumed a reference gap width of zero in E97). 0 ) L . : . L : )
Now, we note that the problems farand o are linear and may 2~ ¢ - 05 0 08 1 vo2
be solved exactly. That is, we may integrate E3) twice and
use Egs(2.4), (2.6) and(2.7) to solve foru ando. We find

8st

sistani

ES
T

Fig. 2 A typical contact resistance function
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Fig. 4 Bifurcation diagram showing the constant in the steady
-2 : ‘ . ! ‘ L : —  solution as a function of the bifurcation parameter, o
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a
Fig. 3 Geometric solution of the steady-state problem d2¢
+A2¢=0 3.6
oE TN (3.6)
wherea satisfies $(0)=0 &7
1
et (3.2) ¢'(1)+p(1)=45 f #()dL. (3.8)
1+R(—pual2) 0

Our observations about the nature Rfallow us to plot the left Here 5= puR’(—u/4)/8. This linear eigenvalue problem has a so-
and right sides of Eq(3.2) on the same plot as functions aef lution ¢ when\ satisfies
This is done in Fig. 3. With physically realistic assumptionsRyn 2 _ : _
it is clear that we will always have at least one point of intersec- A" cog) +45(codh) — 1)+ A sin(A)=0. (3.9)
tion, and hence at least one steady solution. We also note th&e solutions of this equation in conjunction with £8.5) deter-
depending upon the exact nature Rf we may have more than mine the stability of the perturbatios; if Re(\?)>0 (<0), then
one steady-state solution. To clarify this situation further, we ned¢lde steady state is linearly stalflenstablé. The solutions of Eq.
more detailed information about the contact resistance. For si3-9) were studied by Barbgr2]; we do not repeat his analysis
plicity, we specify the value oR at a convenient point. In par- here. Rather, we simply note that in our notation, Barber’s result
ticular, we shall assume th&(— un/4)=1. This implies thata is that 5<1 corresponds to linear stability>1 corresponds to
=1/2 is a solution of Eq(3.2) and henc&* (x) =x/2 is a steady- linear instability, whiles=1 is the marginally stable case.
state solution of the systeii2.14), (2.15, and(2.16). Next, we With the assumptions mentioned above conceriipgnother
define alternative characterization of the bifurcation &passes through
one is possible. Retaining only up to cubic terms, and uéag)
(3.3) in the equation defining the steady stai@s2), we obtain a cubic
polynomial fora. By construction, one solution is of course,
=1/2. The other two solutions are given by

F(n)= 1+R(7)
and note thaF(— w/4)=1/2. In order to have a bifurcation of the

type investigated by Barb§?], it is easy to see that we must have 1 [2\3%2 6(5—1)
that »=— /4 be an inflection point foF. That is, we assume a= Ei(_) \/m. (3.10)
F"(— ul4)=0 andF”(— 1/4)>0. This implies that we may ex- K K
pandF in a Taylor series abouy= — w/4 as follows: We see that these solutions are unphysioabginary for 6<1,

1 (i puld)? and that we pick up two new physical _solu_tions agasses
F(p)= =+ (n+ wl)F' (— uld) + TR F"(— u/4)+---.  through one. At least locally, the bifurcation is of the standard

2 6 pitchfork type. The linear theory is summarized in Fig. 4.

(3.4)

Throughout the remainder of this paper we shall localize th® Nonlinear Theory
analysis about the steady-state soluti#n(x)=x/2. That is, in

J - ; h : ) In the previous section we found and investigated the linear
addition to assuming thay= — /4 is an inflection point for, A 9

. . . . stability of steady-state solutions to our model, i.e., Egsl4—
WEe assume that nearby this |nfleqt|on pdiris well approximated (2.16. We made physically realistic assumptions about the con-
bythitﬂ:/\S/tetihr:\?:ssontzert?] telfms in tthcka)_l'!'taylc;rtﬁe(taid). dv solutioléCt resistance functioR, and determined that* (x) =x/2 was a
ron gate the finear stabilily ol the steady SolUlofy sion for all positive values of the parameteiWe showed that
0" (x) =x/2. Accordingly we seek a solution {@.14), (2.19, and 4 jinear stability of this solution changed apassed through
(2.1 in the form one. In particular, fod< 1, this solution was found to be linearly
X ) stable, while for6>1, linear theory predicts that any infinitesimal
(x,t)= §+<;$(x)e’A t (3.5) perturbation will grow exponentially. Clearly, in this parameter
range, the linear theory is only valid for a limited time. In this
where | ¢(x)|<1. Inserting this ansatz into our governing equasection, we use the asymptotic matching techniques of boundary
tions, expanding the nonlinear terms in Taylor series, and omittifeyer theory to extend our analysis into the nonlinear regime. That
quadratic and higher order terms ¢) we obtain the eigenvalue is, we investigate the nature of the solution to our governing equa-
problem tions when§ is nearby, but greater than one, and the initial con-
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ditions are such that the system starts near the now unstable seligenvalue parametex, appears in the boundary conditions. Con-
tion, #*. Our goal is to develop an approximate solution which isequently, we cannot simply consider the operater—d?/dx?
valid for all time, thereby allowing us to understand the dynamicsnd rely upon the theory of eigenfunction expansion lap

and history dependence of solutions near this bifurcation point= _)\2¢_ Rather, we must exercise care in defining an operator,

We begin, by imposing the initial condition constructing an adjoint, and in deriving an expansion theorem. We
X follow a typical approach as outlined, for example, in Friedman
0(x,00= 5+ eh(x). (4.1) [10].

We begin by considering the space of two component vectors
Here,e<1 andh(x) is an arbitraryO(1) function. Note that this U, whose first component is a real-valuéd function, u(x), and
definese and starts our system negf(x). It is now convenientto Whose second component is a real numhgr, We define the
rescale by setting/=ev + 6* (x). Introducing this rescaling into INNer product of two vectors in this space by
Egs. (2.14, (2.15, (2.1, and (4.1), expanding the nonlinear 1
terms in a Taylor series and retaining terms uP{e&?) we obtain (U,V)= J u(x)v(x)dx+uqv; . (4.14)

0

v
=— (4.2) Next, we restrict our attention to the subspabe,of vectorsU

i 2
g ox such thatu(0)=0 andu;=u(1)+u’(1). Then, we define an op-
v(04)=0 (4.3) eratorL acting on elementt) of D by
v 1 v d’u
&(1,t)+v(1,t)=(45J’0v({,t)d{ l+65(1,t)—ev(l,t) - ax2
LU= . (4.15)
! ’ 4(9(0%%(1))
—ezcg( f v(L,0)d¢ (4.4) dx dx
0

Note that our eigenvalue problem, E¢$.11)—(4.13), is now sim-
v(x,0)=h(x) (4.5) ply stated as find a vectdf in D such thalLU=\2U. Further, we

H N *
where here:§=,uF”’/3 and is, by assumption, a positive number'®Y define an adjoint operatdry, where

We assumei=0(1). d?u
Next, we leté=1+ ye? wherey=0(1) and we seek a solution T dx2
in the form L*V= q (4.16)
v
v (X, t)~vo(X, )+ v (X,t) + €20 (X, )+ . (4.6) &(1)

Inserting this expansion into Eq$4.2—(4.5), and equating to

* i -
zero coefficients of powers &f we find thatvo(x,t) satisfies and acts on element¥, of the subspac®” defined as two com

ponent vectors satisfying’ (1)=v(0)—v(1) andv,=—v(0)/4.

gy  9%vg The reader may easily verify that with the inner produédt]14),
T (4.7)  we have(LU,V)=(U,L*V).
Next, we may attempt to derive an expansion theorem and
vo(0t)=0 (4.8) solve our leading order problem. First, we note, of course, that the
o N discrete spectrum of is given by Eq.(3.9). The fact that our
Yo _ operator is not self-adjoint raises the possibility thaalso pos-
ax (L +vo(1) 4f0 vol£,)d¢ (4.9) sesses a continuous spectrum which would effect the nature of an
eigenfunction expansion. By using a Green’s function approach,
vo(X,00=h(x). (4.10) we may rule out this possibility. The details of obtaining this null

Hgsult are lengthy, the interested reader is referred to Appendix B
of ([9]) for an example of this calculation. This having been said,
we now construct eigenvectors. We find

We construct a solution using eigenfunction expansion. Accor
ingly, we seek solutions in the fori(t) ¢(x), separate variables
and obtain the eigenvalue problem, E¢3.6)—(3.8), with §=1

for the spatial eigenfunctionsp(x). Hence the eigenvalues are a,, Sin(\ ,X)

given by Eq.(3.9 with §=1. Further, from the linear theory in .

the previous section and from Barber’s analysis, we note that zero U.= n (4.17)
is an eigenvalue and that all other eigenvalues are purely real. " a N\, COg\,)+a, sin(\y) '
Next, we must take our analysis one step further and explicitly N,

construct the eigenfunctions and derive an expansion theorem.

Towards this end it is useful to remove the integral from thethere\y=0 and the remaining.’s are the real nonzero solu-

boundary condition, Eq23.8). We integrate Eq(3.6) from zero to tions of Eq.(3.9) for §=1. Similarly, we can construct the fol-

one, solve for the integral, and use this result to eliminate tthewing adjoint eigenfunctions from our adjoint eigenvalue

integral in Eq.(3.6). This yields the equivalent system problem:
) 4sinhg)—Ny|
W+)\2¢:0 (4.11) bn(cos()\nx)+ W) sm()\nx))
V=
$(0)=0 (4.12) by
4
dop  do _,[do (4.18)
4 &(0) &(1) —Kz(&(l)ﬂﬁ(l))- (4.13)

where, of course, tha,'s are the same as above. We note that
We note that\=0 remains an eigenvalue of this system. How¢U,,V,)=0 for all n¥m and that(U,,V,)#0 for all n#0
ever, the new formulation4.11)—(4.13), makes clear the fact that while (Ug,Vo)=0. Further, we choose the,’s, for n#0 so that
we are faced with a nonstandard eigenvalue problem. That is, ¢, ,V,)=1 and we choosa, so that{U,,Ug)=1.
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Now, we can construct a solution to our leading order problem v0(0,7)=0 (4.29)
by using the eigenvectors and the adjoint eigenvectors just de-

Ig]rfr(\j" We seek a solution lying in the subspé&x the following 2(1’7)+U°(1’7):4J vo(Z,7)de. (4.30)
: X o
vo(X,t) » This system may be solved and we fing(x,7) =A(7)x where
g :2 Ane‘)‘ﬁtun. (4.19) A(7) is an undetermined function of the slow time variabte,
W(l,t)ﬂ;o(l,t) n=0 Using this we may simplify th@©(e) system and we find
2
The governing equation and the boundary conditions are of course '7_021 =0 (4.31)
sgtisfied, whilt_a _tr_]eAn’s are still unknown. They will be deter- Ix
mined by our initial conditions. We require that v,(0,7)=0 (4.32)
1% X,O B3
0( ) h(X) &UO 3 1
v, - ~S AU, (4.20) — (LD Fvo(L)=4 | vi(£mdL. (4.33)
— (LO+vo(1,0 hi ] i X 0

. . This system may also be solved and we findx,7)=B(7)X
whereh; and theA, are yet to be determined. If we take an inne{ynereB is an unknown function. Using ou®(1) andO(e) so-

product withVp,, wherem=0, we find Ay =(H,Vy,) where lutions we can simplify th@©(e2) problem. We find thab (X, 7)

h(x) satisfies
H:( o). (4.21) 2
1 (9U0 _ vy (4 34)
Next, we take an inner product wity and find (H,Vq)=0 ar  ox '
which implies 0,(0,7)=0 (4.35)
1
4f h(x)dx=h, (4.22) du, 1 1
0 x L Fa(ln) =4 va(,1)d{+4ay | vo(£,mdl
0 0

and hence uniquely determinles. Now, A, is still undetermined.

To remedy this situation, we take an inner product Withacross 2 ! :
Eqg. (4.20 and solve forA, to find CO( J; vo(£, A - (4.36)
- Using our solution fow, integrating Eq(4.34) with respect tox
Ao=(H,Ug)— >, A(U,,Uo). (4.23) and applying the boundary conditions, we find that this system
n=t only possesses a solutionAf( 7) satisfies
We now have a complete solution fog(x,t). dA 2
Noting thath,=0 and that all othek’s are real, we see from —— = 4yA— 2 A%, (4.37)
Eqg. (4.19 that all modes except for the, mode decay in the dr 4

large time limit. This implies that as—« we haveuvq(x,t)

. This ordinary differential equation determiné¢r) up to an ar-
—Ao3/1X. If we now attempted to compute a solution fOriary constant which is obtained by matching back to the short-
v1(x,t), which is forced by the, solution, we would find that

Cor L . -_time solution. That is the initial condition fok() is given by
v,— ast—oo! This implies that our expansion is nonuniform in

time, and hence only serves astart-timesolution. To obtain the . vo(xt) 3
long-time behavior of our system, we turn to boundary layer A(0)=lim——=~Ao\/ 13 (4.38)
theory. e
We begin by changing to the slow or long time scatee’t.  Our short-time solution, Eq4.19, and our long-time solution,
Our problem forv, Egs.(4.2—(4.5), becomes A(7)X, may be assembled into a uniformly valid solution. That is
v v 3 - a, SiN(A;X)
27 _ 7 2
€= (4.24) v(x,t)~A(ezt)x—A0\/;%x+n§_:O Ane Ant%JFO(e)
v(0,7)=0 (4.25) (4.39)

P gives the leading order behavior of solutions for all time.
v

+ — —
1+e€ o (1,7)—ev(l,7)

i 1 17)=|46 ' d
&( ,T)+U( ,T)( fov(§’t) g

5 Discussion
3

_ (4.26) We began by formulating a model of a one-dimensional ther-

moelastic rod subjected to conditions which allowed for ther-
o moelastic contact and the possibility of a thermoelastic instability.
Here, we seek a solution in the form In contrast to our earlier nonlinear stability theot}9]), in this

2 model we included a general form of the Barber condition. Physi-
v ~vo(X D) ¥ i)+ Evp(Xy )+ (4:27) cally based assumptigns about the nature of the contact resis)tlance

Introducing this expansion into our long-time E¢4$.24—(4.26), function,R(7), were made. With these assumptions we set out to
and equating to zero coefficients of powerseofre again obtain verify Barber's linear theory[2]), and to extend his analysis into
an infinite set of equations which sequentially determineuthe the nonlinear regime.
In order to determine the leading order solution, we shall need theThe linear theory showed that for a certain class of contact

1
—ezcgU v(¢,Md¢
0

equations up to ordes?. Our order one equations are resistance functions, or more precisely for suitable assumptions on
5 the reciprocal contact resistance functiéh,the system under-
97vo _ (4.28) went a bifurcation ag$ passed through one. That is, just as Barber
X ' discovered, there is a transition from one stable stationary solution
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2r note that Eq(5.2) includes a cubic nonlinearity. Recall that this
term arose due to the nonlinear nature of the contact resistance

1504 function, R(#). Further note that this nonlinearity exerts a stabi-
\ lizing influence on the solution. In Fig. 5, we sketch the phase
WL \ plane for this amplitude equation. We see tifatapproaches
+4./ylcy according as the initial condition is positive or negative.
osh \\ This implies that the solution tends &x where
\ 1+(2)3’2 [6(6-1) 65
L AN a=-=>|— /N— .
) N \\\ 2 \u F"(— ul4)
05F \\\ These are precisely the solutions uncovered by the linear theory

and hence Barber’s conjecture is verified. Further, questions of
history dependence may now be answered by simply examining
the initial condition onA. The sign of this condition dictates
whether we tend to the positive or negative solution. This sign in
turn simply depends on the direction of the perturbation to the
unstable steady solution. Similarly, questions concerning dynam-
o 05 1 s > ics of solutions are answered by the time behavior of E5)

A and(5.2).

Finally, a comment about the method of analysis is in order. As
stated in the Introduction, the switch from the method of multiple
scales to boundary layer theory was necessary in order to be able
to carry out the analysis. As can be seen from the section on the
nonlinear theory, this technique allows one to explicitly solve the

to three solutions with alternating stability. The solution that wa€duced equations at each order. Such solutions are algebraically
stable undergoes an exchange of stabilities and becomes unstif@ctable with the multiscale approach. This phenomena has
for o>1. been observed in nonlinear stability theory for other types of prob-

Next, we attempted to extend the linear analysis into the nol§Ms, examples may be found {f.1]) or ([12]). This simplicity
linear regime in the neighborhood 6f 1. In doing so, we hoped does, _however, come at a price. In particular, we only discover the
to verify the conjecture of Barber that solutions which start ne&foW time behavior of thelominantmode. As all other modes
the now unstable steady-state approach one of the two lineaf§cay this price is not too steep, but yet it should be acknowl-
stable solutions uncovered in the linear analysis. Further, W§&89ed. The gift of simplicity, however, gives one hope that mul-
would like the nonlinear analysis to clarify what initial conditiongidimensional nonlinear stability theories are within reach. As a
go to which solution and how they get there. That is, we want finpal note of inspiration to the reader, we observe that Barber's
understand history dependence and dynamics in the neighborh§Bgar theory has now been extended to a nonlinear theory in a
of the bifurcation. To accomplish this goal, we developed a uniteighborhood of the blfurcatl_on. Such a nonlinear theory is often
formly valid asymptotic approximation to the solution using théeferred to as a weakly nonlinear stability theory. A global non-
asymptotic matching techniques of boundary layer theory. Theldear stability theory would be of interest and remains a challenge
techniques yielded the following asymptotic approximation to the" the curious researcher.

Fig. 5 Behavior of solutions to the amplitude equation, which
governs A(7)

solution:
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Energy Pumping in Nonlinear
Mechanical Oscillators: Part
I—Dynamics of the Underlying
Hamiltonian Systems

The systems considered in this work are composed of weakly coupled, linear and essen-
tially nonlinear (nonlinearizable) components. In Part | of this work we present numerical
evidence of energy pumping in coupled nonlinear mechanical oscillators, i.e., of one-way
(irreversible) “channeling” of externally imparted energy from the linear to the nonlin-
ear part of the system, provided that the energy is above a critical level. Clearly, no such
phenomenon is possible in the linear system. To obtain a better understanding of the
energy pumping phenomenon we first analyze the dynamics of the underlying Hamiltonian
system (corresponding to zero damping). First we reduce the equations of motion on an
isoenergetic manifold of the dynamical flow, and then compute subharmonic orbits by
employing nonsmooth transformation of coordinates which lead to nonlinear boundary
value problems. It is conjectured that a 1:1 stable subharmonic orbit of the underlying
Hamiltonian system is mainly responsible for the energy pumping phenomenon. This orbit
cannot be excited at sufficiently low energies. In Part 1l of this work the energy pumping
phenomenon is further analyzed, and it is shown that it is caused by transient resonance
capture on a 1:1 resonance manifold of the systdidOl: 10.1115/1.1345524

Los Angeles, CA 90024-1597
e-mail: obsidian.seas.ucla.edu

1 Introduction ization can be realized through appropriate selection of the initial

In this and a companion paper we study nonlinear ener ndmonstﬁf theﬁﬁtem, a;nd does not involve any spatial “flow

pumping in coupled mechanical oscillators. By this terminology, energy through the system. . o
Nonlinear transfer of energy between nonlinear modes in inter-

we denote the controlled spatial transfer of vibrational ener .
from the point of its initial generation to a differenpredeter- 12l resonance has also been studied extensieély10]). In ad-

mined point where it eventually localizes. In essence, the enerdjfion, as recently shown by Nayfeh and co-workers, under certain
pumping phenomenon corresponds to the controlled one-w‘é‘}nd't'ons energy transfer from high to low-frequency modes of a
channeling of the vibrational energy to a passive nonline$f¢akly nonlinear structure can also ocelt1]). However, these
“sink” where it localizes and diminishes in time due to damping'onlinear energy exchanges are solely due to modal interactions
dissipation. There exist numerous studies in the literature @hd do not necessarily involve controlled, one-way spatial transfer
“static” mode localization, spatial motion confinement, and or®f energy through the system.
energy transfer due to internal resonances in coupled mechanical© the authors’ best knowledge the only previous study of the
oscillators. The nonlinear energy pumping phenomenon discusg@thlinear energy pumping phenomenon is the one by Gendelman
herein is a distinct nonlinear mechanism of energy transfer sincéi2]. In that work a system of two weakly coupled oscillators, a
is realized through resonance capt(rs]). linear and an essentiallponlinearizablgnonlinear one, was con-

Linear and nonlinear passive ‘“static” mode localization angidered. Pumping of energy was demonstrated numerically by
spatial motion confinement in periodic and nonperiodic coupleghowing that, under certain conditions, energy initially imparted
oscillators have been studied extensively in the literafize9]). in the linear oscillator transfers to the essentially nonlinear one,
In these studies, linear and nonlinear standing wave motions wexeen though this later oscillator is not directly excited. However,
analyzed in ordered and disordered periodic coupled oscillatorg rigorous analysis and explanation of this phenomenon is given
and the existence of spatially localized free and forced standingthat work.
waves was rigorously proven by means of theoretical, numerical,in Part | of this work we present numerical evidence of energy
and experimental techniques. The standing wave localization c@imping in two and three-degrees-of-freedom coupled oscillators
sidered in these preViOUS works can be classified as “static” Sinqﬁth essential nonlinearities and weak viscous dampmg We then
it does not involve any controlled spatial transféransition of  focus (for simplicity) in the two-degrees-of-freedom case, and
energy through the system; indeed linear or nonlinear mode locghalyze systematically the bifurcation structure of the free nonlin-
e b ear periodic orbits of the underlying Hamiltonian system with no

Contribute i i ivisi i
ooy th Appled Mechanios Divior o AUERICAN SOCETY OF - damping. We show that the occurteriae lack of energy pump-
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept!19 €an be explained by considering the 1-1 and higher order
29, 1999; final revision, May 2, 2000. Associate Editor: N. C. Perkins. Discussion ¢g@sonant orbits of the Hamiltonian system. A direct analysis of the
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depan%rgy pumping phenomenon is carried in Part Il by transforming
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, arﬁ_l . . . . .

e damped equations of motion using the action-angle variables

will be accepted until four months after final publication of the paper itself in th J . -
ASME JOURNAL OF APPLIED MECHANICS. of the underlying Hamiltonian system. We show that energy
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pumping is a resonance capture phenomenon on a 1-1 reson: 1,
manifold, and construct analytical approximations of energy N
pumping. 0.758 .
0.5}
2 Nonlinear Energy Pumping: Numerical Evidence '

Consider the following two-degrees-of-freedom system com
posed of two weakly coupled and weakly damped oscillators:

0.25

Yi+tely1+Cys+e(y;—y,)=0 (1) -0.25 1
Vot eNYot @iy, te(yo,—y1)=0 0.5

Weak coupling is assured by requiring thakl, and all other -0-75 ,
variables are assumed to 1) quantities; dots denote differ-
entiation with respect to the independent variablgime). For
£=0 the system decomposes into two uncoupled nonlinear ar
linear oscillators, labeled “Oscillators 1 and 2,” respectively. We
note that oscillator 1 is essentially nonlingaonlinearizablg

In Fig. 1 we depict the transient responses of the two oscillator
for \=0.5, ®3=0.9,C=5.0,£=0.1, and initial conditiong,(0)
=y,(0)=0, y,(0)=0, y,(0)=y2h, whereh (the energy of the
system att=0+) varies; these initial conditions correspond to 1
impulsive excitation of oscillator 2 at=0. Forh=0.5 (cf. Fig.
1(a)) both oscillators perform damped free oscillations and nc
energy pumping occurs, since most energy is stored in the direct
excited oscillator 2. By increasing the initial energy levelhto
=0.8 and 1.1.25cf. Figs. Xb,0)), it is observed that energy trans-
fer from the directly excited oscillator 2 to the unexcited oscillator
1 takes place; indeed, after an initial transient state most of th
vibrational energy is irreversibly transferrédpoumped”) to os- -0.3
cillator 1. By further increasing the initial energy level the energy
pumping phenomenon becomes less pronounced. This numeric
simulation indicates that, for fixed system parameter valaas,
ergy pumping in the weakly coupled system takes place, above
specific value of the initial energy level (strength of the excita-
tion).

Similar results are obtained for the three-degrees-of-freedor
system governed by

Y1+eNy;+Cyi+e(y;—y,)=0
Yot eNYo+ wdys+e(y,—y1) +d(yo—ys) =0 2

Y3+ eNyat wiys+d(ys—y,)=0 1

representing two strongly coupled linear oscillators that are
weakly attached to an essentially nonlinear oscillator. In Fig. 2 we 0-5
depict the transient response of this systemXei0.5, w§=0.9,
C=5.0,d=1.0,=0.1, and zero initial conditions excep}(0) -
#0. Whereas for low excitation no energy pumping to the non-
linear oscillator occurgcf. Fig. 2a)), asy;(0) increases energy -0.5
pumping takes placeef. Figs. 2b,0)). Hence the nonlinear energy
pumping phenomenon can also be realized in multi-degree-o  _4
freedom systems.

We now focus exclusively in the two-degrees-of-freedom sys-
tem(1). Considering the transient responses deplcted in Fig. 1 \féa 1 Numerical transient responses  y,(t) and y,(t) of sys-
note that, when energy pumping occurs the motion can be dividggh (1) for (a) h=0.5, (b) h=0.8, (c) h=1.125; —— oscillator 1,
into two phases: In the initial phase energy is rigorously pumped — — oscillator 2
from oscillator 2 to oscillator 1 in ane-way (irreversiblejrans-
fer, until oscillator 1 reaches a certain amplitude of oscillation; in
the second phase of the motion, both oscillators perform decaying
oscillations due to damping dissipation with oscillator 1 retaining Motivated by these observations we now proceed to examine
most of the vibrational energy. Moreover, during the initial energthe periodic orbits of the underlying Hamiltonian system by elimi-
pumping phasédefined approximately for€t<40 in Fig. Ab), nating damping from Eqgs(1). Since system(l) is weakly
and 0<t<60 for Fig. 1c), the motion of oscillator 1 is composeddamped, one expects that, at least at the initial stages of the mo-
of a “fast” oscillation with frequency nearly identical to the natu-tion, the dynamics will be greatly influenced by the dynamics of
ral frequency of oscillator 2, and a “slow” envelope oscillationthe correspondingundamped Hamiltonian system. In turn, the
This strongly suggests that a liiternal resonancédetween os- undamped dynamics are dominated by periodic orbits. As a result,
cillators 1 and 2 plays an important role in the energy pumpinge expect that the topological structure of the periodic oraitel
phase, although this still does not explain the one way enerteir bifurcation$ of the Hamiltonian system, will play a domi-
pumping from oscillator 2 to oscillator 1. nant role in the energy pumping phenomenon.

=

=—=r oo
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Introducing the action-angle variablek, (6,) e (R* X S') for
oscillator 2 defined by the relations,= 2T, 7w, Sin6,, v,=Y,
= 2T, w, cosé,, the Hamiltonian of the undamped system is ex-
pressed as

~ 2

PN . &
0 'f;*"‘L‘&'I H*=F(y1,01)+G(I2)+ EHl(YLUl:@z:'z) (3)
%7100

A
!
v

where

F(y1,01)=(vi2)+(Cy/4), G(lp)=w,ls,
HY(Y1,01,602,12)= (Y1~ V2l /w, Sin 6,)2.
The equations of motion can then be placed in the following form:

__(?F+e¢9H1 . OF e gH?
N 2wy Ty 2

~07 +8(7Hl i e oH? 4
72T, 2T T 250, “)
wherev; =Y, . By fixing the Hamiltonian(total energy to a con-
stant levelh, we can express the actidn in terms of the other
variables of the system as follows:

&
HE:F(y11U1)+G(I2)+ zHl(ylvv1|921|2)

=h=1,=L%(y;,v1,0,,h) ®)

whereL? is a complicated expression. As a reviewer pointed out,
t the inversion(5) is only possible if the system is nonsingular, i.e.,
ot ¥ if the conditiondH®/dl ,# 0 is satisfied; clearly, this is the case in
our problem. Taking into accourtb), eliminating the time vari-
able from(4), and combining the resulting first-order expressions
into a single second-order one we obtain the reduced oscillator

1
yi+(Clo3)yi=¢ 2dl 2w3y,+4Cy3sir? 6,

. 2
N .
i in i
1hE e i [H o
i b P w,(4h—5Cy7)sin g,
0.5t} A {\ 1[\ i - +2w2y}| —sin 26,
:'\5‘":" S04 ) 2h Y L
SOLSERY W W
Sl i i {\-'l wyY1 COSH;
I P + +0(&?)
-1.5} iy o Cyél1 2 42
2h— - wdy;
2
=eg(y1.y1,02)+0(&?). (6)

Fig. 2 Numerical transient response of the three-degrees-of-
freedom system for (a) y3(0)=2.0, (b) y3(0)=3.0, and (¢) We note that the derived expression is approximate since it ne-
¥3(0)=4.0; — oscillator 1, - - - - oscillator 2, — — — oscilla-  glectsO(e?) terms; this approximation was imposed by the im-
tor 3 possibility of finding an exact expression fof in (5). As a result,

the following analysis is valid only for undamped systefi$

with sufficiently weak coupling. In6), y;=Yy1(6,), and primes

i ; ; ; ; _denote differentiation with respect 8 . In addition, the “forcing

3 Periodic Orbits of the Underlying Hamiltonian Sys- o ." i ight-hand side is2-periodic in 8,. This com-
tem pletes the reduction process.

The underlying Hamiltonian two-degrees-of-freedom system is Employing the previous analysis, the problem of computing the
obtained by setting=0 in (1). At a fixed level of energyHamil-  periodic orbits of the undamped systdf) is equivalent to the
tonian we employ the reduction method outlined i8] to reduce problem of computing the periodic solutions of the reduced sys-
the undamped systefi) to a single-degree-of-freedom nonautotem (6). This equivalence holds since a periodic motioryjrand
nomous oscillator with periodic forcing. This is a standard redue-, under a periodic change i} leads to a periodic motion fdx,
tion process by which am(+ 1)-degree-of-freedom Hamiltonian as well. Since the reduced system is essentially nonlinear we re-
system with symmetrysymmetry of time translationss reduced sort to an analytical/numerical technique to compute the periodic
to ann-degree-of-freedom nonautonomous system with no syrarbits and their bifurcations. In particular, we introduce a nons-
metry. mooth transformation of variables to transform the problem to a
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set of nonlinear boundary value problems over finite domainy,(8,) = e(®, / a) Y(t(6, / a)) (Subproblem 1)
This technique was first developed by Pilipch{itk,15 and then

applied to smooth and nonsmooth problems in dynamics in a ¢ i
ries of works([16,17)). We refer the reader to these works for 0.6 !
more technical details of the method. 6.4 }
We now compute the periodic solutions @) with period T \
=4a (yet undetermined We express the solution in the follow- A 02
ing form: 0,/a
-1 2 3
Vi(0) =X(7($)) +e($)Y(($), $=b2la  (7) \j ! \/
where the new independent variabl€g) ande(¢) are bounded v :
nonsmooth functions of their argumegt -0.6 |
I

. e(P)=7(9). 8)

2 [ (7

m(p)= ;arc& sin -

The derivative in(8) should be understood in the context of the
theory of distributions. Both nonsmooth variables are periodic |

¢ with (normalized period equal to 4. We note that l{y) the vy, (8,) =X(2(8, /a)) (Subproblem 2)
solution is expressed in terms of two componeKtdepends only

on 7 and is termed th&k-componenbf the solution.Y also de- .
pends solely onr and is multiplied bye; it is termed the 0.3 T
I-componentof the solution. Interestingly, expressid@i) has a !
phenomenological resemblance to complex variable represer o2 '
tion with e playing the role of the imaginary constgnfnote that A ! /\
2 2
ec=—j°=1). !
Employing the transformatioi7) we express the derivatives -1 1 2 ; 8. /a
and powers of/; in (6) in terms ofX andY, and set separately the -0.1 :
R andI-components of the resulting expression equal to zero. V' o ! ]
then obtain the following two subproblems governing t&end !
I-components of the solution: 0.3 I
Subproblem 1.
Fig. 3 Construction of the solution  y; over an entire normal-
) 2/ 2\\3_ 2 _ - - 2 1
Y'+(Calwy) Y =ea’g(y,=Y,y1=Y'/a,0,=mm7)+0(e%), izeq period (equal to 4) from the half-normalized period solu-

a=mm, X=0 Y(£1)=0, m=123.... (9) "os @e¥(n) andb)X(n)

Subproblem 2.

L, odic orbit with period equal to 27, i.e.,p-times the period of the
y1i=X,y1=X'/a,6, nonhomogeneous term Finally, we note that the periodic solu-
tion y,(t) is obtained from the solutions of the nonlinear bound-

X"+ (Ca®lw3)X3=ea’g

2n—1)mr 5 ary value problems either ag5(6,)=e(6,/a)Y(7(0,/a)) (Sub-

- 2 +0(e%), problem 1, or asy;(6,)=X(r(6,/a)) (Subproblem 2 where
0,= wot+ 0,0+ O(e). Now, the nonlinear boundary value prob-
(2n—1)m lems above provide the solution only in the normalized half-
= . Y=0 X'(x1)=0, n=123.... period re[—1,1]. To extend the result over a full normalized pe-

(10) riod (equal to 4 we need to add the component of the solution in
the interval 7e[1,3]; to perform this we take into account the
We note that the above subproblems were obtained by sett$gnmetry properties of the nonsmooth variabtemde, and add
either theR or I-component of the solution equal to zero. Thergither the antisymmetric image of the solution about the point
the solutions of each subproblem provide a distinct class of sy 7)=(0,1) (for Subproblem 1, cf. Fig. @), or the mirror im-
harmonic motions of the problem. In general, the problem ogge of the solution about the line=1 (for Subproblem 2, cf. Fig.
tained by applying the previous method leads to a coupled syst )
of equations inX andY, however, this case will not be consideredsoI

here. and 5 we depict the leading low-order subharmonic orbits and

Since no analytical solution exists for these nonlinear bound Weir bifurcations for the undamped two-degrees-of-freedom sys-
value problems we need to resort to a numerical method to solve

. 2 .
them. Before we perform this numerical computation, howevef™ with @3=0.9,C=5.0,£=0.1 and varying values of the total
we make the following remarks concerning the method of nonEN€rgyh. In these figures we also present one-period representa-
mooth transformations. The boundary conditiongdn and (10) tlc_)ns of a num_ber of subharmonic orbits. In the blfurcatl_on plqt of
impose smoothness on the transformed derivativeg, ofthese Fi9- 4 we depict the values of'(—1) at the subharmonic orbits
boundary conditions define the domain of the solutions of tH& functions ofh (recall that the solution domain of the above
nonlinear boundary value problems=[—1,1]. In addition, the Nonlinear boundary value problems isl<7<1); in physical
quarter-period of the solutiom, for each subproblem is allowed ateérms,each point denotes the initial slope agf the subharmonic
countable infinity of values. Taking into account that the period ¢frbit, corresponding to zero initial displacemegt =0. In Fig. 5
the periodic solution isT=4a, and that the nonhomogeneougve plot X(—1) as function ofh; in physical termsgeach point
term in (6) is 2m—periodic ind,, we conclude thaBubproblem 1 denotes the initial displacement pf the subharmonic orbit, cor-
computes the2m:1, m=1,2,3 ... subharmonic orbits of6), responding zero initial slopey;=0. These plots depict only the
whereas Subproblem 2 computes {#n—1):1, n=1,2,3... responses of the unexcited oscillator 1; the corresponding re-
subharmonic orbitsA subharmonic orbit of ordep:1 is a peri- sponses of oscillator 2 are computed using relat®rderived in

he nonlinear boundary value probleni® and (10) were
ved using a single-point numerical shooting method. In Figs. 4
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Fig. 4 Leading 2 m:1 subharmonic orbits as functions of h: —Y'(=1) for m=1, —Y’'(—1) for m
=2,— — —Y'(—=1) for m=3

the course of the reduction process, and the relatipns system, the large regular region surrounding orbit A is expected to
=\215Tw,sinb,, 6,=w,t+ O,0+0O(e). Finally, we emphasize become a large region of attraction, with that orbit becoming an
that, since the reduced systdgB) neglectsO(e?) terms, the re- attractor. Additional stable and unstable 1:1 subharmonic orbits of
sults presented in Figs. 4 and 5 are approximate and valid only fbe system are indicated in the Poincan@ps, confirming the
sufficiently small values of. Of special interest are the 1:1 sub-approximate asymptotic results of Fig. 5. At the small energy
harmonic orbits labeled A-D in Fig. 5. These orbits dominate tHevel h=0.05 there are two stable subharmonic orbits; both orbits
dynamics as shown below. correspond to localized motions, with orbit A localizing in oscil-

The domain of attraction and the stability of the 1:1 subhatator 1 and orbit B in oscillator 2. At higher values bof the
monic orbits were determined by numerical Poincaaps. These low-energy bifurcation of 1:1 subharmonic orbifsedicted in the
were constructed by considering the original undamped Hgs. plot of Fig. 5 has occurred and there exist four orbits, three stable
First, the four-dimensional phase space of the solutiori$)oflas and one unstable. Note that lasncreases orbit A gradually delo-
reduced to a three-dimensional isoenergetic manifolay fixing calizes from oscillator 1 and localizes in oscillator 2. The regions
the total energy to a constant level?(y;,y;.Y,,Y,)=h; X was of chaotic motion(the “stochastic sea)’in the maps is a well-
then “cut” by the Poincaresection 3={(y;,y1,Y,)EN/y, documented feature in the dynamics of such strongly nonlinear
=0,y,>0}. The PoincarenapP® was defined aP*:3 3, i.e., Systems. )
as a mapping of points ah to their images under the flow of the  The bifurcation diagrams and Poincanaps of the 1:1 subhar-
dynamical system o, under orientation preserving restrictionsmonic orbits lead to a preliminary qualitative explanation of the
Stable periodic orbits ofl) appear as centers in the Poincarap, energy pumping phenomenon, which, as shown in the previous
whereas, unstable periodic orbits appear as saddle points. section, occurs only above a certain level of the initial endrgy

In Fig. 6 we depict the Poincaraaps of the undamped systemWhen energy pumping occurs, an initial transfer of energy occurs
(1) with C=5.0,e=0.1 and varying values of the energyThe from the directly excited(linean oscillator 2 to the unexcited
1:1 subharmonic orbits labeled A-D correspond to the ones of tlreonlineay oscillator 1; moreover, the “fast” oscillation during
approximate bifurcation plot of Fig. 5. A common feature of althis initial phase of the motion has a frequency nearly identical to
these plots is a large region of regular moti@mooth quasi- the linearized natural frequenay,. Hence, it is logical to con-
periodic orbitg in the upper regions of the plots, surrounding thelude that the 1:1 subharmonic orbit A existing over the entire
stable 1:1 subharmonic orbit A. When damping is added to tmange of h and having a large domain of attraction, is mainly
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Fig. 5 Leading (2n—1):1 subharmonic orbits as functions of h: —X(—=1) for n=1, — —=X(—1) for n=2,
— — —X(—=1) for n=3; XXXX unstable 1:1 subharmonic orbits

responsible for the energy pumping phenomertdowever, this transients of oscillator 1 can not attain sufficiently large ampli-
family of orbits can not be directly excited &t 0 since it cannot tudes, they cannot act as “bridging” orbits to excite the 1:1
satisfy pointwise the initial condition ¢¢(0),y(0))=(0,0) (this subharmonic orbit A and no energy pumping can take place.
is the initial state of oscillator 1 when the energy pumping ph&hus, for sufficiently low values dfi no energy pumping is pos-
nomenon is initiated as a result, d@ransient “bridging” orbit  sible. For higher values dfi the initial transients for oscillator
must be initially excited, satisfying zero initial conditions andl attain sufficiently large amplitudes to excite the 1:1 orbit and
ultimately “connecting” with the 1:1 subharmonic orbit A. Underenergy pumping can occur. This conjecture explains the lack
these conditions energy pumping occurs. Noting that the amptif energy pumping forh=0.5 in the simulations of Fig. 1.
tude of the 1:1 orbit has a lower bound of approximately 0.4Clearly, the previous arguments form merely a conjecture, but the
(cf. Fig. 5 and considering the initial transients of the numericahore rigorous analysis in Part Il of this wo¢kL]) validates these
simulations of Fig. 1, we conjecture that if the initial transienarguments.
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h=0.05 h=02

Fig. 6 Poincare’ maps of the dynamics of the undamped system (1) at varying
energy levels for ®3=0.9, C=5.0, £=0.1: (a) h=0.05, (b) h=0.2, (c) h=0.8, (d) h
=2.0

4 Analytical Approximations (13), and averaging over the fast periodic tereh& we obtain the
llowing set of averaged equations governing tbemplex am-

As a final note, we now present an analytical technique to ap: .
b Y d Wudes:,oi ,i=1,2:

proximate the transient responses of the Hamiltonian system;

contrast to most standard techniques which are based on the as- € 3jC ) je

sumption of weak nonlinearity, the method used here deals with 1t 5| @7, PT Q|<P1| et 5902:0

the strong(nonlinearizablgnonlinearity of oscillator 1. An exten- ) (15)
sion of this technique for the damped system in Part Il of this oot 22 0 —0

work ([1]) will enable us to analytically approximate the transient P2 o, 1Y

responses during the initial phase of energy pumping of Fig. 1

> X . interestingly, in contrast t611), the transformed systeifi5) is
To this end, we express systdt) in the following form: gy b ysten1s)

completely integrable, with the following two first integrals of

Y1+ ey +Cyi—ey,=0 1y et
(1) |@1]2+ ]| >=N?
. 2 _ )
Y2t 0y,—ey;=0 o 3jC je
wherew?= w3+ ¢. A transformation to complex variables is now 7|<P1\2_ m|@1|4+ 5, (P13t elez)=H.  (16)
introduced, . .
_ _ Employing these results, the complex amplitudes are expressed as
Y1=yitjoyi, Po=Yotjoys, (12) ¢1=Nsinge/’, @,=N cosel’z. a7)
and(12) are rewritten as Substituting(17) into (15), we obtain the final set of equations on
j j ic the 2-Torus governing the angle-variableand 5= 6, &,
- w &
e () — = (h— ) + — )3 . o 3CN e
wl 2 (lﬁl l/’l) 2w(¢l ‘ﬂl) gg(lﬂl wl) S+ —— 3Sin20+—COt20C085:0
2 8w w
e . (18)
+ 5= (= 43)=0 e C i e
2w (13) 6+ o™ sin6=0.
- je . We note that the orbits oft8) can be analytically computed in
Yoot Z(‘/’l_ ¥1)=0 terms of pseudo-elliptic quadratures by employing the change of
variables(17) in (16), and then integrating the second of E({s3)
where the star denotes complex conjugate. by quadratures.
An approximate solution of13) is sought, based on the as- By numerically integrating18) we can study transierihonpe-
sumption of fast oscillations at frequenay riodic) orbits in the neighborhoods of the 1:1 subharmonic orbits
o i of the underlying Hamiltonian system. In Fig. 7 we present the
Yr1=e1€l, =8, (14) Y Y g b

phase plots of18) for varying values of the energy-like first in-
Relations(14) indicate the presence of 1:1 internal resonance tegralN, confirming the bifurcations of the 1:1 subharmonic orbits

the fast dynamics of oscillators 1 and 2. Substitutiig) into depicted in the analytical approximations of Fig. 5 and the nu-
merical results of Fig. 6.
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Fig. 7 Phase plots of the system of Egs.
=5.0, £¢=0.1, and varying values of the first integral of motion
N: (a) N=0.4, (b) N=0.8, (c) N=

5 Discussion

We presented numerical evidence of energy pumping in non-

1.9

(18) for @3=0.9, C

is above a critical level. Hence, energy can be “pumped” to a
predetermined part of the systdthe nonlinear oscillatgr which,

in essence acts as a passive nonlinear sink. Clearly, no such phe-
nomenon is possible in linear systems.

A 1:1 stable subharmonic orbit of the underlying Hamiltonian
system(obtained by setting damping equal to Zeveas conjec-
tured to be responsible for the energy pumping phenomenon. We
conjecture that the reason for lack of energy pumping at low en-
ergies is due to the fact that the 1:1 subharmonic orbit can not be
excited unless the energy of the system is above a critical level.
The energy pumping phenomenon will be further studied in a
companion papef{1]) where it will be shown that it is caused by
transientresonance capturen a 1:1 resonance manifold of the
system.

We remark that the energy pumping phenomenon, which in this
work was purely passive, could be enhanced using active control.
Utilizing this phenomenon one can introduce passive or active
nonlinear sinks in predominantly linear extended periodic struc-
tures where externally imparted energy is directed and locally
eliminated. This can lead to enhanced vibration and shock isola-
tion designs of extended mechanical systems.
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e-mail: avakakis@uiuc.edu system with essential (nonlinearizable) nonlinearities by means of two analytical tech-
niques. First, we transform the equations of motion using the action-angle variables of the
underlying Hamiltonian system and bring them into the form where two-frequency aver-

VO- Ge“dEIma“ aging can be applied. We then show that energy pumping is due to resonance capture in
Institute of Chemical Physics, the 1:1 resonance manifold of the system, and perform a perturbation analysis in an
Russian Academy of Sciences, O(e) neighborhood of this manifold in order to study the attracting region responsible
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the energy pumping regime. The results compare favorably to numerical simulations. The
practical implications of the energy pumping phenomenon are discussed.
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1 Introduction 2 1:1 Resonance Capture Analysis

In this paper we extend the results presentefilinon energy ~ We consider the following two-degrees-of-freedom system
pumping in weakly coupled nonlinear oscillators. The effects @omposed of two weakly coupled, weakly damped oscillators:
damping are added to the analysis, and it is shown that energy

pumping is caused by resonance capture on a 1:1 resonance mani- Yi+eny +Cyi+e(y;—y2)=0 (1)
fold. The phenomenon of resonance capture occurs in nonconser- ) ) 5
vative oscillators and leads to transient capture of trajectories in a Yot eyt wry,+e(y,—y,)=0.

domain of attraction on the resonance manifold. ) ) ] )

Resonance capture, as well as single and multifrequency avERe linear oscillator is labeled “oscillator 2,” whereas the
aging techniques for analyzing nonlinear oscillators have be&Hrongly nonlinear one “oscillator 1.” This system was numeri-
studied in previous publicationdfor example,[2—4]). General Cally integrated in[1] with initial conditionsy;(0)=y,(0)=0,
theorems on resonance capture in two-frequency systemh as  Y1(0)=0,Y(0)= y2h, corresponding to impulsive loading of os-
the ones considered hergimere given in the aforementioned ref-Cillator 2. It was shown that for sufficiently high values bf
erences and if,6]. In [7—9] resonance capture in perturbed two{impulse energy pumping occurs: Vibrational energy “flows” to
dimensional Hamiltonians is studied by perturbation technique§e unexcited oscillator 1 in an irreversible way. After energy
Additional asymptotic techniques for analyzing transient resonaP¢mping, the motion of the two oscillators is dissipated due to
layers(passage through resonahege given in[10—16. damping. ) _

In this work we study energy pumping by employing two ana- 10 analyze the energy pumping phenomenon in the strongly
lytical techniques. We note that the two-degrees-of-freedom sy@nlinear systenil) we first transform the equations of motion
tem considered herein irongly nonlinearand weakly damped utilizing the actlon-gngle variables of the u_nderlylng Hamiltonian
as a result, standard perturbation methods that are valid ffstem(corresponding ta.=0). These are given bj17]:
weakly nonlinear systems are not applicable in this case. First, we
transform the strongly nonlinear, weakly damped equations of y :Almcn[ZK(l/Z)el l}
motion into a system of four first-order equations R*(xR" ! ! 2
X S'x S using the action-angle variables of the underlying
Hamiltonian system. The resulting equations are in a form ame- i — A1 )ZK(1/2)
nable to multifrequency averaging, and resonance capture analy- vi=Y1 e
sis. We then show that the transformed system satisfies the con-
ditions for resonance capture on a 1:1 resonance manifold. In the xsn[ZK(llz) 01 }} n[ZK(1/2) 61 1
second methodology followed in this work we extend the pertur- ) T 2
bation method based on complexification of the equations of mo-
tion developed iM1] for the weakly damped case, and provide 21,

Yo= w—zsin 6,

} @

analytic reconstructions of the transient responses of the system

during energy pumping. We conclude with a discussion of the

ractical implications of the results of thi rk. :

practical implications of the results of this wo 02=Yy= \ 21 a7 COSO,

Contributed by the Applied Meclhan'ics I_Division OHE AMERICAN SOCIETY OF Wherte(I 1) == 1/3 is the instantaneous frequency of free oscil-
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED . . . T
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept!‘_ﬂjmon_of oscillator 1K(_1/2) is the complete _elllptIC integral of the
29, 1999; final revision, May 2, 2000. Associate Editor: N. C. Perkins. Discussion dirst kind, and the variabled and = are defined as
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Department
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and 1 1/6 37 13 3774(: 13
will be accepted until four months after final publication of the paper itself in the A=|— ER— HE= —pr——

(40) K(1/2)) ' (8K4(1/2)

ASME JOURNAL OF APPLIED MECHANICS.

42 | Vol. 68, JANUARY 2001 Copyright © 2001 by ASME Transactions of the ASME



The action angle variables!l,,6;,6,)e(R"XR"XT?), cludes any trajectory of3) from being captured on eesonance
(whereT? is the 2-torus can be regarded as nonlinear polar comanifold For system(3), the conditions for the existence of an

ordinates for the underlying Hamiltonian system. (m:n) resonance manifold are given by
Introducing the transformations y{,y;)—(l,,6;) and
(y,,¥2)—(l,6,) into Egs.(1), and expressing them as a set of mQ(11) —Nw,=0 5)
four first-order equations, we obtain S
. 3'%/3’” f f Ep(Jl,Jz,01,OZ)GXF[—j(m01—n02)]d01d02#0,
= I AR [ et 25rPdn?] 0 -0
2K(1/2 p=1,2
X1 —AA1TPQ4(1,) ( )snzdn2+AI}’30nsndn
™ wherem,n are integers. A basic feature of two-frequency systems,
o B such ag3), is the possibilityof resonance capturen a resonance
— /2 24in gzsndn]seFl“lJzygl’gz) manifold: This is a dynamic phenomenon where an orbit gets
2 “trapped” by an attracting region of the system in & ¢)

the trajectory gets “captured” on the resonance manifold, aver-
aging is not justified anymore since the time average is not close
to the space average over the entire 2-Torss §,) € T?; hence

(3) condition A of the Theorem.

. 21
I,= —a[ZMzcos2 0,+ \| —= cosb,
w3

=eFy(l1,15,0,,0,)

21,
—=sin,— Al%n
w32

] neighborhoodboundary layer of the resonance manifold. After

) 2K(1/2)\2 -1 From (4) it directly follows that in the absence of resonance
— = 213 4 2 2 1 1 i
0,=Qq(1)+¢&| EAIS (—) (cn*+2sn?dn?) capture one expects the action variables to déapproximately
™ exponentially in time. In Fig. 1 we depict the numerical time
2K (1/2) decays of the action variables for systédf) corresponding to
x[ —NARQ (1) cnsndnt Al ¥en? parameters =0.5, w3=0.9,C=5.0,£=0.1, and initial conditions
m y1(0)=y,(0)=0, y;(0)=0, y,(0)= y2h with varying h (the en-
21, ~ ergy of the system at=0+) varies; these responses correspond
—~/=Zsin azcn] =04(11)+&Gy(11,15,61,0,) to the transient responses of the physical coordinates depicted in
2 Fig. 1 in Part | of this work(1]). Forh=0.5 no energy pumping
sine 20 occurs and the actions decay nearly exponentially to zero indicat-
o 2 oy [el2 . 13 ing the absence of resonance capture. At the higher energy values
Op=wote NP [ A 210z COSOp+ w5 sin 6= Aly cn} h=0.8 and 1.125 energy pumping from oscillator 2 to oscillator 1
- occurs, which is indicated by the fact that as time progreksgés
=wy,+eGy(l4,l,,01,6,). surpassed,(t). Moreover, at certain time intervals there is a

“flattening” of the plot of 1,(t), accompanied with oscillatory
"ehavior ofl 1(t); these variations of the action plots from expo-
nential decay indicate the occurrence of resonance capture at these
higher energy values, a phenomenon which can be directly asso-
ciated to energy pumping. In addition, examination of the tran-
ﬁient responsg,(t) during energy pumping indicates the pres-
ence of fast oscillations with frequency approximately equalto
c{[1]). This observation, coupled with the previous findings sug-
gests thathe energy pumping phenomenon(i) is associated

with resonance capture in a neighborhood of the 1:1 resonance

In the expressions above, the arguments of all elliptic functio
are given by 2K(1/2)6,/,1/2]. We note that by construction
the expressions on the right sides of expressi@sare 27—
periodic in the angle variable® and ,, and the action variables
are positive real numbers.

Equations(3) represent a two-frequency dynamical system i
(R"XR*XT?), and are in a form that is directly amenable t
two-frequency averaging 3]). By applying straightforward aver-
aging we obtain the following simplified system:

:]1:8{:1(\]1,32):*8)\31 manifold . . . ,
. - (two-frequency averaged system  Motivated by the above discussion, we analyze in detail pos-
Jo=¢eF,(J31,Jd5)=—¢eNJ, sible resonance capture (i) associated with thél:1) resonance

(4) manifold (it is a straightforward task to show that conditiofs

. ~ hold f =n=1
where E(3;.35)=1/4m2f27[27F (31,350, 6,)d6:d0,, and 00 OFM=N=L)
Jp>0, p=1,2. The conditions under which the dynamics of the
averaged systerf#) accurately describes the dynamics of the full
system(3) has been addressed in previous wotks example, and restrict the analvsis i : . .

, - ) ysis in @(./s) neighborhood of this mani
[2,5,9). Arnold’s theorem([2]) answers this question. fold. To study the dynamics in the boundary layer close to this

Theorem ([2]).  If system(3) satisfies the following condition Manifold we introduce the(slow) combination angley= 6,
A, —6,, and introduce the change of angle (6,)— (¢,6,) and

the following coordinate transformation {i3):
d (Q(Il)

Ql(|1)=w2$|1=(w2/5)35|&1—1) (6)

at —)7&0 (along trajectories of the system |1:|(11_1)+\/§§,

wo |2: 7. (7)

then the difference between the slow motida(f),|2(t)) of the  yransforming the last of Eq€3) using the previous coordinate
perturbed systen(3) and (Jy(t),Jo(t)) of the averaged system cpanges, we express the fast anglén terms of the independent
(4), remains small over timél/e): time variable, as follows:

- < = <t< .
IO-Jolsxie, I 10)=X0), Ost=lh 0= wy+eGo(11 ", 7,4,0,) + O(e3)=t=(6,/wp) + O(s).
This result is optimal. (8)
Additional theorems on the relation between the trajectories of
the full and averaged systems have been proven by Neishtadt &mdploying (8) we establishp, as the independent variable in the
Arnold in the references cited. Condition A of the Theorem preemaining three Eq<3), and express them as
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Fig. 1 Transient responses /,(t) and /,(t) of system (1) for, (a)
h=0.5, (b) h=0.8, (c) h=1.125; — oscillator 1, — — — oscil-
lator 2

. - 4R
§'=Neowy Fi(IT ™ i 0) Fewy 5= (1077 0 6)

+O(83/2)
7' =sw; Fi(187 Y, 9,1,0,)+0(s%9) €)
§2
' =NeQi(1f )y et ewy | Q108 S

+G1(158 7Y 0,00, 02) = Go(117Y 7,40, 6,) | +O(e%?)

where primes denote differentiation with respectftg and the
following notation is adopted:

Fo(le, 2= 7,01= 4+ 0,,0,)=F(11,7,4,0,),

44 | Vol. 68, JANUARY 2001

Gp(lll|2: 7]:‘91:¢+ 02,02)EGP(|1,7],¢,02), p:172'

We note that, in contrast t8), (9) is alocal model since it is
valid only in anO(\/e) neighborhood of thél:1) resonance mani-
fold. Since the only remaining fast variablé,| is used as inde-
pendent variable, all dependent variableg9nare slow varying,
and, as a result, we can apply asymptotic techniques from the
theory of nonlinear dynamicésuch as, averaging or multiple-
scale$ to study the flow of the system close to the resonance
manifold.

To this end, we replace the independent variabl@jrby two
“slow” and “fast” variables, {=.6,, 6= 0,, respectively. In
addition, we express the dependent variables in series,

E=£0(8,0)+ e £1(8,0) +££,(8,0)+0(%?)
7=10(8,0) e (8,0)+eny(6,0)+0(e¥d  (10)

= o(8,0) + ey (8,0) +ey(8,0)+0(£%?),

and substitute intd9). Balancing the coefficients of the same
order of e we obtain a series of subproblems governing the ap-
proximations of different orders ifl0).

O(£% Approximations. The zeroth-order approximations
can be trivially solved:

£05=0=£0(6,0)=A0(?)
N05=0=10(5,4) =Bo({) (11)

Wos=0=1(5,{)=Co({)

where the short-hand notation for partial differentiation,
(@)/056=(@), is adopted, and thédependent functions are
determined at the next order of approximation.

O(&¥?) Approximations. The subproblems governing the
first-order approximations are

§15= = &oct o3 "F1(187Y 90,10, 6)
MN1s= — Mot (12)

b15= — ot w; 1011 &

Substituting(11) into (12), and eliminating secular term@.e.,
right-hand side terms depending only Onwe obtain the follow-
ing solvability relations that govern the unknown functions in
(11):

2T
A5<z>+<2mz>*lf0 F1(197Y,Bg(£),Co(¢),6)d6=0

By({)=0=B({)=By (13)
CH(O—wy "0 (1 M)A =0.

Performing explicitly the integration in the first of the above re-
lations and combining the three equations into a single second-
order one we obtain a pendulum equation with constant forcing
governing the combination angle,

CH(O)—wy '01(15 )

2w
><<2mu2>*1j0 F1(15 7Y ,Bo(£),Co(),8)d6

=0=Cy({)+u cosCqy(7)=—v, (14)

where 1. =0.8987E \By/ 03K (1/2)A and v=(\ w,)/3. Depend-

ing on the relative values gk and v, the phase portrait of14)
possesdif u>wv) or not (if u<w) a closed homoclinic loop of
containing closed periodic orbits surrounding a stable equilibrium
point (cf. Fig. 2. This loop when perturbed by higher order terms
becomes the attracting region responsible for sustained resonance

Transactions of the ASME



O(e) Approximations. The subproblems governing the
second-order approximations are rather involved and are omitted.
The equations for eliminating the secular terms from these sub-
problems are given below:

AL =THCD+a1(d)

CO
C1(O=ToA1(D)+0(2) 17)
2
Bi<§>=<2mz>*lf Fo(187 By, Co(0),8)ds
0
where
2w F
Tl<§>:<2mu2>—lf TTLED By Col£), 8)d8,
c’ o Y
10 o
To= 0, 100187 Y)
— 2 -1 am (9'22 ’
c 01(0)=(2mwy) fo _19C0(§) Co(0)
(-]

JF
+(9—,710&1*”,Bo,co(o,a)Bl(z)

+(;Tl:llﬂ(ll_l)7BOxCo(§),5)Ao(§)}d5

27
Fig. 2 Phase portraits of system  (14) for, (a) u>v, and (b) p<v 02()=(2mws) *Q4(I &lfl))f FO8 Y ,Bo,Co(0),8)ds
0

2m

+(27Tw2)7lf [C1=Galut-1 By o096

capture in systenil): under certain initial conditions, trajectories 0

of the system in arO() neighborhood of the 1:1 resonance F(20.) 10711 A2

manifold get attracted to the region of the loop where they per- (202) 117 ) Ao(0).

form multiple oscillations around the attractor. Under differentpe thirg of Eqs(17) uncouples from the first two, which form a

initial conditions trajectories lie outside the homoclinic loop andet of nonhomogeneoutinear equations with la parameter-

get repelled away from the attracting region; in this case no resgspendent coefficient. These equations govern the perturbations of

nance capture occurs. Note that sustained resonance capturgdSyhase portraits of Fig. 2 and produce the attracting region for

only possible ifu>v, which leads to the following lower bound (e5onance capture.

for Bo: Although algebraically involved, we now show that the solution
of the linear set17) can be written in explicit analytical form. To

)\“’g/zK(l/z)A ? - this end, we combine the first two equations into a single second-

R e (condition for resonance captupe P .

2.6962 order equation as follows:

(15)

. o C1(O) = T2T1(HC1(H=T2a1(4) +a5(4)- (18)
This relation indicates that for resonance capture to occur the
action variablg(i.e., the energyof the directly excited linear os- We note that the parameter-dependent coefficiertL8f can be
cillator 1 must be above a certain threshold. This conclusion is éxpressed as
accordance with the conjecture made in Part | of this wpth).

After computing the-dependent functionéll) by eliminating d U B
secular terms froni12), the O(\e) approximations are computed ToTa(d)= ARE 008 ) (2mwy) !
as
R 2
£1(8,0)=w; 'FI1E Y By, Co(0),8) +As() ><J Fi(15 Y ,Bo, 4, 6)ds (19)
0 ¥=Co(0)
71(6,)=B1({) (16)

i.e., as the partial derivative it of the second part of Eq14)
P(8,0)=C1(0) governingCy(¢). It follows that one homogeneous solution of
X R (18) is given byC{!M=aC/(£). A second linearly independent
where FO(111™Y | By,Co(8),8)=[?F1 (1111 ,By,Co(£),u)du is  homogeneous solution can be obtained by considering the equa-
a 2m-periodic function ins, andF, denotes the zero-mean comtion for the Wronskian of (18), leading to, C{"
ponent of the functiorF, (i.e., the function minus the constant=8C(¢)[*[Cy(u)]~2du. These two linearly independent homo-
term appearing in the first of Eqgs(13)). The unknown geneous solutions are used to compute a particular integral by the
{-dependent functions of the solutions are computed by eliminatethod of variation of parameters, which completes the solution.
ing secular terms at the next order of approximation. The final expression of the solution ¢E8) is given by
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3 Analytical Approximations

We start the analysis by rewriting systdi) in the following
form:

14
Ci()=|a— fo CP(0)[T0:(v)+qp(v)]dv |C(0)

I
+| B— foc(llm(v)[Tqu(v)+q§<v)]dv V().

Yi+eNy+ey;+Cy;—ey,=0

(20) Vot ey, + w?y,—ey,=0

The coefficientsa and B in (20) are determined by satisfiying
limiting conditions of the solution ag increases or decreaseswherew2:w§+s. Note that in(21) the damping coefficients are
Examples of such calculations are given 8]. assumed to be dd(1), in contrast to(1). At this point we com-

In the next section we construct analytical approximations fqiexify the problem by introducing the new complex variables,
the transient response () in the initial phase of energy pumping
(2). In the spirit of the previous section the analysis is based on
the assumption of 1:1 internal resonance, and the results compare
favorable to direct numerical simulations. i=(—1)"2 and expres$21) as

* VAN

(21)

p1=y1tjoyr, Y=Y tjwy,, (22)
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Fig. 3 Numerical solutions of system
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0

(30): (a) no resonance capture (M=2.8), (b, c, d) resonance capture (M=4.0, 10.0, 15.0)
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Fig. 4 Transient response y,(t) of system (1), (a) when no
energy pumping occurs (h=0.5), and (b,c) when energy pump-
ing takes place (h=0.8, 1.125). & ¢ ¢ ¢ O O ¢ ¢ Analytical ap-
proximations based on (30), —— Numerical simulations.
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. jo 2 . je .
$1*7(¢1+¢1)+ 7(%*%)*5(%*%)

i (Y1 +97)%+ Je (Y= 5)=0
3 1 1 2 2/
8w 2w (23)

k |
b it Sk 95+ S (91— ) =0,

Relations(23) are exact. We now seek an approximate solution of
(23) is sought, based on the assumption of fast oscillations at
frequencyw:

Y= @181, Y=, (24)
Relations(24) signify 1:1 internal resonance condition in the fast
dynamics of the system. Substitutit@#) into (23), and averaging
over the fast periodic variabled®!, we obtain the following av-
eraged system:
+j( s) +s)\ 3jC| 2 +j8 0
P1T 5| O = IP1T 57 P17 o 3 |P1| P17 5 P2~
2 2 8 2
w w w (25)
) e\ je o
P2t 5 2t 5o 1=0.

For =0 the system is completely integrable and has been further
analyzed if 1]. To account for the amplitude decays due to damp-
ing we introduce the new variables, and o, defined by

@1=01eXp—elt/2), @,=0,exp —elt/2) (26)
and expres$25) as
i ( 8) 3jCe &M je
017 — %5 3

o+l o—— +—| o201+ =—0,=0
2\ 1) 8w 2w @7)
. je
o+ ZO']_:O.
Manipulating the above set of equations it can be shown that it

possesses the first integral,

|12+ *=M?, (28)
which enables one to express the amplitudes in the following way:
o1=Msingel’, o,=M coshel’. (29)

Substituting(29) into (27), and performing algebraic manipula-
tions we reduce the problem to a final set of parameter-dependent
nonlinear equations on the 2-Torus:

® 3CMe ®\ £
+5- Tsm2 0+ Zcotze c0s5=0
(30)
. e .
0+ Zsm 6=0

whereé= 6;— §,. We mention that although the set of equations
above appears to be similar to the one derivedlihfor A=0
(actually, the two sets become identical by setting *'=N in

the notation of that work the damped dynamics is dominated by
the “drifting” of the “instantaneous equilibrium points” due to
the exponentially decaying term {30). We note thats denotes
the relative phase, whil@ determines the instantaneous ampli-
tudes of the motions of oscillators 1 and 2.

The numerical integrations of systei30) for varying values of
the initial first integralM reveal clearly the energy pumping and
resonance capture phenomenon occurring in sy§tBmThese
results are presented in ti86) phase plots of Fig. 3 for param-
etersw=1, C=2.0,e=0.1, \=1.0 and initial conditions0)=0
and #(0)=0.01. These numerical results were obtained by match-
ing displacements and velocities of the following two solution
branches{a) the initial branch is obtained by Taylor expansions
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of the original equations of motiofil) close tot=0 and takes rected and then eliminated. Of particular interest to the authors is
fully into account the initial conditions of the systefh) the later the potential enhancement of the energy pumping phenomenon
branch consists of the numerical solution of the analytic approxhrough either nonlinear coupling stiffness elements, or active
mation(30). For M = 2.8 the initial energy imparted in oscillator 2 control. This would pave the way for practical implementation of
remains confined to that oscillator since the damped oscillati@mergy pumping in vibration and shock isolation designs of engi-
corresponds to small values @f (cf. relations(29)). At higher neering systems.

values ofM we note energy pumping to oscillator 1, correspond-

ing to trajectories which start with small values éfand after

some transients settle to damped oscillations withose tor/2. Acknowledgments
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Introduction termined stability boundaries for the moving string with speed

ctuation. Both of these analyses are limited to monofrequency

I . . . ol
The trans_verse_ V|brat|on of aX|a_IIy moving materials sul_)]ecte rametric excitation and first-order approximation. They do not
to parametric excitations has received considerable attention fr _%d

. - ress secondary resonances. The present work shows unique
many researchers. Most studies have addressed the stability u practically important behaviors associated with multi-

parametric excitation with a single frequency component. Pra_cﬁ'equency excitation, secondary resonances, and second-order
cal systems, however, are subjected to multifrequency exc'tat'oﬁﬁ‘proximation.

that may significantly impact the dynamic behavior. In vehicle' The two works noted above give a good review of prior studies
serpentine belt drives, for example, the engine drives a crankshgft harametrically excited moving media. Particularly relevant
pulley that powers a single belt, which in turn supplies power @y dies include the work of Mahalingarf3], Mote [4,5],
multiple automotive accessories. Engine firing pulses cause bliguleswaran and Willian$], and Asokanthan and Ariaratnam
translation speed fluctuations. Additionally, these engine firing] Recent studies include Oz et E8] and Chakraborty and Mal-
pulses, in combination with dynamic accessory torques, exciig [9]. Ulsoy et al[10] motivated the studies for automotive belt
pul!ey rotational vibrations that lead to tension oscnlatlops in th@rives by showing a primary source of transverse belt vibration to
individual belt spans. The speed and tension fluctuations baje parametric instability caused by tension fluctuation.
parametrically excite the belt spans. The speed oscillations have

spectral content related to harmonics of the engine speed, and the )

tension oscillations have multifrequency spectral content assoBiroblem Formulation

ated with the engine speed and dynamic accessory loadrhe system is a beam/string of lengthmoving with time-

frequencies. ] . ) . dependent transport velocity(T). The equation of motion for
This study investigates the stability of parametrically excitedyansverse vibration is

moving media subjected to dynamic tension and speed fluctua-

tions with arbitrary spectral content. A discretization/perturbatiofA(Vr1+ CVy+ 2CVrx+ C?Vyx) = (Py+ Pg) Vxx+ ElVyxxx=0

method yields the excitation frequency-amplitude parameter plane (1)

boundaries separating stable and unstable regions for the singlerepA is the mass per unit lengtEl is the bending stiffness,

mode primary and secondary resonances and the combinatofs the transverse displacemeiits the time,X is the spatial

resonances for any two modes. These boundaries are determig@stdinate P, is the mean belt tension, amy(T) is the dynamic

analytically in closed form through second-order perturbatiofension. The dynamic tension results from longitudinal belt

Nonlinear limit cycles that occur in the parametric resonance remotion and midplane stretching from transverse deflection. Under

gions are determined analytically and numerically. the assumption of quasi-static stretchifig.1]), the dynamic
This work builds on that of Mockensturm et al], who deter- tension is

mined closed-form analytical expressions for all primary and the EA 1 (L

first sum type combl_natlon_ resonance regions of a moving string Py=— | U(L,T)=U(0T)+ _f Vv, 2dX @)

with tension fluctuation. Similarly, Pakdemirli and Ulsg®| de- L 2 ),

o whom correspondence should be addressed whereEA is the longitudinal stiffness modulus atdlis the lon-
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gives 9 92 9

- 0 —
Utt+27vtx+7tvx_(1_yz)vxx+avxxxx C= 2(9)( Zyom , D= 28 ’
1 (1 0 0 0 O ©)
—g[u(l,t)—u(o,t)—l- Efo 020X |vy=0.  (4) P
. . . . . =l |, w=|"
The relative longitudinal motion of the end points, which re- o o ’ v

sults from rotational pulley oscillations, consists of multifre-

quency excitation of the form The inner product in the state spacéW¥,V)=[iWTVdx, where
k k the overbar denotes complex conjugate and superstignotes
_ _ transpose.
10— = ; Qit+6)= ; Qit+6,). . . . . .
futh-un] gzl Uj cos i+ 6) .21 & CO QL+ 6) The Galerkin basis consists of the state-space eigenfunctions
(5) for the nonparametrically excited syste8) ([12])

g;=(EAL)/P,<1 represents the ratio of the dynamic tension jontn| [Nt
fluctuation caused by thgh spectral component of the relative Un Un
endpoint motion to the mean span tension. The relative longitudi- . . ,
nal motion of the endpoints(1t) —u(0y) is specified. In serpen- Where, are the complex eigenfunctions @ (&= =0) and
tine belt drives, it is calculated from dynamic analysis of the dig2n @€ the natural frequencies. Tiig, possess the orthonormality
crete pulley rotations induced by crankshaft excitations amtiorerties — (Adn,®m=sny, (BOp, B )= —NnSmn=
dynamic accessory torques. Engine firing pulses cause a spadd’ndmn- For the moving string modela(=0) the eigensolu-
“ripple” on the mean crankshaft rotation speed. The associatdigns are

belt speed fluctuations are

d,=

(10)

1 :
K :,//n=mr—\/1__yze'“”“/oxsin(n7-rx), Nn=jwp=inm(1-7})
H ’ ! 0
=0+ 2 6l SinQt+0)). (6) (11)
=

for fixed pulleys at the string supports. Eigensolutions for a trav-
Typically, the dominant speed and tension fluctuation frequenejing beam can not be expressed in closed form and require nu-
equalsN/2 times the engine speed, whexeis the number of merical solution([4]).
cylinders, though higher harmonics of this frequency and acces-
sory torque frequencies are also present. The dimensionless fre-

quencies are related to the dimensional on€k‘) by Q;

= pALHP O .

with tension and speed fluctuations is
k
—(1—A2 _E O
Uit 2700 ix = (L= ¥5) Uy @V xynx “~ £ COLQit+ 6;)vyy
{=

k/
+ D & {204 SINQt+ 8]) + 2900 SINQ/ L+ 0))
=1

K’ 2
+0Q/v,cogQ/t+6)}+ ( > &l sinQ/t+ 0{)) Vy=0.
i=1

@)

For subsequent discretization, it is convenient to rewfiein
state space form as

k/
AW, +BW+ D, &/{sinfQ/t+6)C+Q/ cogQ/t+ 6/ )D}W
i=1

K K’ 2
— > & cogQt+ ei)Ew+(2 el sin(Q/t+ 9()) EW
i=1 =1

=0 (8)
1 0
_ 2 P
0 —(l—‘yé)m‘i‘am
2 i 1— 42 i + "
Yogx ( Yo)ﬁ a-a
B= P ’
A2 ey — 0
(1 7’0)3)(2 “ox?
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From (4), the linearized equation of motion

Multifrequency Parametric Instabilities

To investigate primary parametric instabilities, we use a single-
term Galerkin discretization for theth mode obtained by use of
one traveling system basis function

W= £,(D)®(X) + E()Dp(X) =2 REE(DD (0], (12)

Mockensturm et al[1] demonstrated the excellent convergence
achieved with this single term expansion for a string model. Sub-
stituting (12) into (8) and taking the inner product witlk, yields

the complex, time-varying equation(the notation Epp,
=(E®,,?,), Enn=(E®D,, D), Esn=(ED,,D,), etc., and
similar relations for theC and D operators are used throughput

k

.gn_jwnfn_ 82 fi cogQit+6)) (annn'i'EnEFn)
=

K’

+ 82 fi/ sin(Qi’t+ Hi/) (gncnn'i_gncﬁn)
i=

K’

+ 821 70/ cogQ/t+8') | (£Dpn+ EDn) =0,
=
n=1.2,:- (13)
where all the excitations are taken to be of the same order, that is
ei=ef;, e/=ef] f;,f/=0(1). (14)

Based on the Floquet theoty13]), combinations of parametric
excitation frequency and amplitude for whi¢h3) has periodic
solutions separate the regions of bounded and unbounded mo-
tions. These stability boundaries are sought in the form of pertur-
bation expansion§11]),

&n=Pot+ep1te?py, (15)
For simplicity, the body of the paper examines the case of tension
excitation alone §; =0), where(13) reduces to

Wa=Wpt+er+er,.
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k

gn_jwngn_{SE fi coqQ;t+ 6,) (annn"'EnEﬁn):O
=1

n=12,- (16)

Stability results for speed fluctuations and simultaneous tension
and speed fluctuations are given in the Appendix. Substitution of

(15) into (16) gives the sequence of perturbation problems

Po—j@npe=0 (17)
k
bL= a1 =ir1Po+| 2, fi COS Qit+0) | [PoEnn+ PoErn]
“
(18)
P2—j@nP2=]r 1P+ jr2Po
k
+| 2} ficogit+ 6) | [P1Enn+ PrEr ]
“
(19)
The periodic solution of17) is
po=aeont, (20)
Substitution of(20) into (18) yields
Kog
P1—@npy=riae®i+ X S {a, [ell @t Ent ]
i=1
+e_j[(ni_z’n)t+9i]]
+EEFn[ej[(Qi7":’n)t+6i]+e*j[(9i+:"n)t+ ﬂi]]}.
(21)

1 Primary Instability.

In general, the sole secular term in

(21 is jrlaejant and its elimination leads to the trivial solution
(a=0) orr;=0 (secondary instability, considered lgtewWhen

- S T
Po= JBaPo=ir p2e 4 jr ybel“n'+ 2 Exbel it 1)
k
ffalEml®

k
2 f a|Enn|2
i=Tie A — Q) =l

4(0,+Q)) +Q|)

+j ont

+N.S.T. (26)

where N.S.T. denotes nonsecular terms. Elimination of secular
terms fromp, requires

k flz

=T+ 4(Qi—Q)

i fi— jo i 2
jrib+ EbEﬁne I=—jaj ry+|Eml

27)

Considering Rdf) and Imp) as the unknowns(22)—(24) show
that the coefficient matrix ii27) is singular. The solvability con-
dition for (27) leads tor,, and the final boundary curves are
obtained from(15) as

k 2
i

Q| €] P &
on=— * o |Em|+|ER —i:lzmm
k 2
Z 4(Q; +Q,) (28)
Using Q,=2w,+0(¢), (28) is converted to

Kk 2

2(1) 8|

0=20,*&|Eqn| —|Em|?| — > E |Qz - +8wn
(29)

Equation(29) applies for moving, tensioned beams. When spe-

any excitation frequency is neat2 , however, additional secular cialized to the moving string=0), the result(29) can be ex-

terms exist. In this cas€),~2w, (that is, Q,=2®,) and ;

pressed entirely in terms of system parameters with the following

#2w, for i#1. The periodicity condition demands that seculagXpressions obtained frofi1):

terms vanish, yielding

jria+ f2 aEqnel 1=0. (22)

Separating the real and imaginary parts leads to

-r +Dlm(E*e"9') lRe(Efe”")
2 a 2 " Im(a)
f| . f| ) [ ga)|
-5 Re(Eqnel ) rnts IM(Epne' )
(23)
For a nontrivial solution 0f23) to exist,
fi

ri==+|Eml. (24)

With =+ (f, /2)|Eﬁn| a solution of(21) is

bejwnt+z j 'aE“”[ ell(Qi+on)t+6] L o= il(Q2i- wn)H—B]]
k J—
_ j _Ti8Em  ira-apt o
=T 2(Q2i= )
fiaEm

—j[(ﬂi+2>n)t+0i]
+E’29+Q|) : (25)

Substitution of(20) and (25) into (19) yields

Journal of Applied Mechanics

Emn=(1—e 2"™0)/(4yg), Epp=jnm(1+75)/2. (30)

Up to the first order of perturbation, the stability boundaries as
given by (29) are determined solely by the root cause parametric
excitation),~2w, with no effect from excitations at other fre-
quencies(see Eg.(24)). Changes in the stability boundaries
caused by the presence of multiple parametric excitation terms are
evident at higher orders of perturbation. Note that the primary
instability boundarie$29) are not affected by the phase angtes
between the multiple excitations. These features are also reflected
in the stability boundaries for speed excitation and simultaneous
speed and tension excitation derived fréh®) ((52) and (55) in
the Appendiy. In the simultaneous tension and speed excitation
case((55)—(57)), the tension and speed fluctuations share a com-
mon frequency component that excites instability. This is typical
of automotive belt drives where the tension and speed both fluc-
tuate at the engine firing frequency.

Figure 1 compares the stability boundaries for a moving string
(a=0) under two simultaneous tension excitatioss=0) ob-
tained by three methods: first-order perturbation, second-order
perturbatlon and numerical method$;~2w; is the root cause
of primary instability. Numerical boundaries are determined by
examining the eigenvalues of the numerically integrated funda-
mental matrix of(16) for varying }; and ;. The first-order
stability boundariegdotted line$ do not capture the effects of the
second parametric excitatiofig) and are the same as for mono-
frequency excitation. The second-order boundaries reflect the im-
pact of the second excitation, and the entire instability region
shifts (solid lineg. The classical result that parametric instability

JANUARY 2001, Vol. 68 / 51
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Fig. 1 Comparison among numerical results (*), first-order perturbation (dots) and
second-order perturbation  (solid curves ) of the first mode (w;=2.76) primary instability
region of an axially moving string under two parametric tension excitations. y=0.35, &,
=0.35.

occurs when an excitation frequency is twice a natural frequenciy — jBnpo= Jrzaejwnt
does not hold when multiple parametric excitations are present.

To see this, considgR29) when two excitations exist, K

_12 E ffpaEnnEn” Qll(Q+Qp=0t+(6+0p)]
i=1 p=1 4(Q -2 n)

2 2 k
el 2e50, ff _E E. -
Ql_zwnisl|Enn|_|Enn|2[8_wn_m- —Jz Z ' p NN O+ Q=)+ (6+ 6]
k k
F et gl gy FlEsl

Because of the excitation at frequen€)s,, the cusp §,—0) j 4(Q —20 ) Ji:1 4(Q0;+2w,)
moves fromQ,=2w, t0 Q;=2w,+2|En|%e30,/(Q5—40?).
The whole instability region shifts accordingly, and parametric +N.S.T. (31)

instability occurs at higher excitation frequendy {>2w,) when  Ejimination of secular terms i1t31) for the case wheif);~w,

Q,>2w, and lower excitation frequencyX;<2w,) whenQ,  andQ,+ w, for i #| leads to the secondary instability boundaries
<2w,. Note that a separate analysis including additional secular

terms is required for the cage,~0,~2w,,. gj
The continuous dependence of the first mode primary instability 0= “’niw_ IM(Enn) | Eqnl

region with the two excitation amplitudes , is illustrated in Fig. "

2. O, causes the primary instability. The shift of the instability K wy, i

region away from(),; =2w, due to the second excitation is appar- —|Eml? — 2 SEW ta,l (32)

ent from the drift in the cusp at;=0. i=1i#l i @n

Analogous results for speed and tension/speed excitation are given

Bhthe Appendix.

2

2

2 Secondary Instability. Primary instabilities are charac-
terized by a response frequency of half the parametric excitati
frequency. In automotive belt drives, however, transverse belt vi-3  Simultaneous Primary and Secondary Instability. In a
bration frequently occurs where the belt frequency is the same fgtem under multiple parametric excitations, a mode may be si-
the engine firing frequency. This is characteristic of secondagyultaneously excited to primary instability by one excitation and
instability where a parametric excitation frequency is close to or@condary instability by another. This situation is expected in au-
of the system natural frequencieQ & wy,). tomotive belt drives as discussed later. With simultaneous insta-

In the absence of primary instability, the only secular term igjlity, the instability boundaries may be significantly different
(22) is jrq aeont, Specifyingr,=0, (25) is again a solution of from those of either excitation acting individually. FiguréaB
(21) except the second summation allows any valué. &ubsti- shows the first mode primary and secondary instability boundaries
tution of this solution inta(19) yields for a moving string for a single excitatior();). The secondary
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Fig. 2 Continuous dependence on excitation amplitudes of the first mode (w,=3.07)
primary instability region of an axially moving string under two parametric tension exci-
tations. Q,=7,y=0.15.

instability region is characteristically much narrower than the pri-
mary one. When a second tension excitation exists with frequency | @ Qponly
0,=20,~2w,, primary instability from{), occurs near the } [ RTEE e
secondary instability fronf),. Perturbation analysis of this dual ] : i
excitation case gives the instability region

2 2 2
€2 ol €1 €2 |_&1
lewniE|Eﬁn|7|Eﬁn| 3 +16w +7Im(Enn)|Eﬁn|- :
@n n @n Secondary Instability

(33) A imdarbo ........

As shown in Fig. 8), the coincidence of the primary instability
caused by(), and the secondary instability &?, significantly
widens the secondary instability region. Notice that the unstable
region iswider for smalle, . Considering the dual excitation case
with Q,=(1/2)),, the presence of a simultaneous secondary in-
stability from ), impacts the primary instability &,~2w,, as
seen by comparing Figs(8® and 3c). Here, the primary instabil-
ity region narrows overall andosesfor nonzero amplitude of the
excitation causing primary instabilitys(~0.1). This phenom-
enon is further depicted in Figs. 4 and 5 for instability in the
second mode. Figures& and 4b) contrast the dependence of

b) Q=20

Primary Instabifity

the second mode primary instability region on excitation ampli- 05 ; :

tude and speed for the cases with and without simultaneous sec- | O Ly=120

ondary instability. In Fig. &), notice that the instability region Odp ol e s thstability
closes for nonzere;~0.3 even though each of the; and (2, ¢ under Q)
excitations induce instability individually. While the width of the 0.3 hee -+ Secondary Instability]
primary instability regions widen with excitation amplitud€ig. o under £,

4(a)), the width of the simultaneous primary/secondary region 0.2 R

may decrease with excitation amplitudieig. 4(b) for small ¢,). Seconjdary Instability -

One can see similar interplay between the primary and secondary 0.4 UnderIQy o
instabilities in Fig. 5, which is analogous to Fig. 4 except the o : _

focus is on the secondary instability. 2 3 4 5 6 7

The widening of the secondary instability regiof (~ w,)
Wher.] a _secpnd eXC|tat|oﬁ2:2(ll~2wn IS present(Flg. b)) . Fig. 3 First mode (w;,=2.95) stability boundaries of an axially
has implications for practlc_al systems. _In _automotlve_belt qr'v':'?ﬁoving string caused by three parametric excitation combina-
(and other systemisthe excitation is periodic but not sinusoidal.sions for 4=0.25: (a) single excitation Q;, (b) two excitations
Because of the integer harmonics of the fundamental frequen@y=20,,¢,=0.3, and (¢) two excitations Q,=(1/2)Q,, e,
(the firing frequency in automotive belt driem the excitation =0.3
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Fig. 4 Dependence of the second mode (w,=2m(1—72))
moving string principal instability region on translation speed

for (a) single excitation, Q;=~2w,, (b) two excitations, €,
~2w, and Q,=(1Y/2)Q,~w,,e,=0.3

(Figs. 4a) and 5a)). As pointed out by Mockensturm et dlL]

for primary instability, there ar@ subcritical translation speeds
where thenth mode primary instability region closes. The same
holds true for secondary instability.

4 Combination Instability. This section addresses sum and
difference type combination instabilities involving two modes.
Taking thenth andmth modes, the discretized equations are ob-
tained from the expansion

W= (1) D (X) + En(D) D (X) + En(D) P (X) + Em(1) D (%)
=2 RE&,(1) D (X) + En(DP (X ]- (34)

Considering tension fluctuations only, use(8#) in Galerkin dis-
cretization of(8) yields

k
.gn_jwnén_ 32 f; cogQ;t+6;)
L 1= ]

x(gnEnn+EnEFn+§mEmn+EmEﬁn) (39)
k
Em—jonén—| £ 2, ficogQit+0)

L I:l 4

><(§nEnm+EwEﬁm+ ngmm+EmEﬁm)~ (36)

Motivated by the expected sum-type instability wh@p~ w,
+ oy, the solution forms are chosen as

spectrum, simultaneous primary and secondary parametric insta- Q;=(wp+ wm) —2er,—28%r,
bility is likely. This may explain the common observation of belt _ om0+ R N
span vibration at the engine firing frequency in automotive drives. =(@n—er =) H(om=er= &) =0+ o

To explain these observations with a monofrequency excitation E=Potepitepy,  Em=0o+eq+e2q,
model of secondary instability, large excitation amplitudes are = = el t sl o= ter g2, 37
required because of the narrowness of the secondary instability no®nt 20 HmeEm e 2
region(Fig. 3(@)) and the inherent damping. The behavior is morgubstitution of(37) into (35) and(36) yields
plausibly understood with a multifrequency excitation model for o o
realistic excitation amplitudes. Po—Jj@nPo=0, Go—j®ndo=0 (38)
As the translation speed increases, both of the secondary and K
primary instability regions narrow and even close at some speeds. . _ . —
b= i®aPr=r1Po+| 2, fi cOS Qit+0) | [PoEnn+ PoErn
+doEmnt JoEmn] (39)
2 k
o S 01— | @t =17 100+ | 2, i COLQit+ ;) [ PoEnm* PoEin
g ST —
-1 Ba0ce + AoEmmT doEfmm] (40)

Fig. 5 Dependence of the second mode (w2=2n(1—y§))
moving string secondary instability region on translation
speed for (a) single excitation, Q;=~w,, (b) two excitations,
Q=w, and 0,=20,~=2w,,£,=0.3
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and similar equations fop, and q,. The periodic solutions of
(38) arepy=a,e“n, go=ane/“m'. With these solutions, elimina-
tion of secular terms i1t39) and (40) for Q,~ w,+ o, requires

f : f :
jria,+ EIEmEane‘ %=0 jriamt EIEHE;me‘ %=0. (41)

After solution of(41) and use of);= w,+ w,+O(g), (37) gives

Q) =w,Font+eV Eﬁmgan (42)

A natural extension to second-order perturbation was also calcu-
lated. As with primary and secondary instabilities, these bound-
aries are independent of the phasing between the different excita-
tion frequencies. Figure 6 shows the sum type instability region of
a moving string under tension fluctuation obtained by first and
second-order perturbation. Note the scaling of Fig. 6; the combi-
nation instability region is much narrower than the primary insta-
bility region (Fig. 1). The effects from multiple excitation fre-
quencies, including the shift of the entire instability region, are
minimal, and first-order approximations that do not capture these
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Fig. 6 Moving string stability boundaries of first (w;=3.071) and second mode (w,
=6.142) sum-type combination instability  (Q,;=w;+w,) for two parametric tension exci-
tations. Dotted curves denote first-order perturbation, and solid curves denote second-

order perturbation.

effects appear justified for practical systems. See the Appendix for K’

speed excitation and simultaneous speed and tension excitation AVVt+BW+82 f/ cogQ/t+6){sin(Q/t+6/)C

results. s i [ i [ [
To examine possible difference type combination instabilities

whereQ,~ w,— w,,, the approximate solutions are constructed as +Qf cogQft+6/)DIW
k
Q=(w,— wy) —2er{—2°r 1 (1
1= (= )= 267 ? —8(2 fi cog it +6) + 5 ¢ vxzdx) EW
=(wp—&r1— &%) —(wm+er1+&%r,)=0,+ o i=1 0
K’ 2
&=Pot+ep1+e?py, Em=0oT el +e°qy . , ,
T on=wnter ey, wp=on—eli—e2ry + 821 fi sin(Qt+6;) | EW=0. (45)

(43)
Galerkin discretization of45) using (12) yields
In this case, the first-order stability boundaries are “9 912y

O =(op—omn) e VEnEnm (44) ;fn_jwngn_e

Closed-form evaluation of the inner products(#) gives com-
plex values for(), . This implies that there are no difference type _ K _
instabilities up to first-order perturbation. X (EpEnnt §nEﬁn)+82 f/{sin(Q{t+6/)(&Chnt ECin)
The results given in29), (32), (33), (42), and the Appendix i=1
generalize those of Mockensturm et [dl], where tension fluctua-
tion is examined, and Pakdemirli and UlS@&}, where speed fluc-
tuation is considered. In those analyses, the parametric excitation
is restricted to a single harmonic term of either tension or speed
excitation, only first-order approximations are derived, and sec-
ondary instabilities are not investigated.

k
1 _
2, fiC0g Ot 6)+ 5 (dii+ dabod+ dafy)

+Q/ cogQ/t+6))(£,Dpn+ £.Dmn)}
K’ 2

e>, sinQ/t+6])

i=1

0 (6n(EQ,, @)+ E(ED, D))

=0 n=1.2,... (46)

2 L dys, d‘?n)
dX, dz—fo(a dx dX,

1
Nonlinear Response Amplitude for Primary Instability dlzJ' (ixn

By including the midplane stretching nonlinearity (), trans-
verse vibration amplitudes are determined for the principal para- 1 dE 2
metric resonance regions. Allowing moderate displacements with 3_f ( ”) dx.
the orderingy =0O(y&) ([1]), the nonlinear form of7) is o\ dx

(47)
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Fig. 7 Time histories and spectra of the modal response under first-mode primary insta-

bility with single frequency tension excitation. (a) analytical approximation, (b)—(d) nu-
merical integration of coupled equations from a three-mode Galerkin discretization. y
=04, w,=0.84w, £,=0.35, 0=—0.2, Q,=2w,;—2£,0=1.687.

The method of multiple scales is applied td6) with the The foregoing single mode analysis ignores the possibility of

expansion other modes being excited through nonlinear coupling. Figure 7
compares the nonlinear response fr with numerical inte-

&n(tie) =po(t,m)+epa(t,7) (48) gratign of the coupled nonFI)inear egﬁgtions from a three-term

wheret and r=¢t are the fast and slow time scales. The tim&alerkin discretization of45). Figures Ta) and qb) show that

derivative is defined ad/dt—d/dt+e(d/d7). Insertion of(48) the amplitude of the first mode response is accurately predicted by

into (46) gives dpy/dt—jw,po=0 and a similar inhomogeneoussingle-mode analysis. There is, however, considerable energy

equation forp; . transfer into other modes that is not captured in the single mode

The problem of interest is that when speed and tension fluctigpalysis(Figs. 7c) and 1d)).

tion share a common frequency component that simultaneously

causes primary instability, that §3,=Q/~2w,,. The nearness of

Q, andQ/ to 2w, is represented b, = Q| =2w,—2ea, where Conclusions

o=0(1). With the solution Po=Kp(7)elon' Closed-form expressions are derived for the stability of axially
= pp(r)eBalD T englent - glimination of secular terms in the dif- moving media subjected to multifrequency parametric excitation
ferential equation fop, yields the conditions from simultaneous tension and speed fluctuations.

dpn 1 The effects of the parametric excitations at frequencies other

ar pal Qn SIN(28,) + P, O 28,) + Rypj] than the one that is the root cause of an instability are evident only
(49) in a second order perturbation. These effects, however, can be
dg, substantial. In a first-order solution, the set of primary and com-
dr bination instability regions for multifrequency excitation are the
superposition of the instability regions for the individual monof-
whereP,,Q,,, respectively, are the real and imaginary parts akquency excitations.
[—(f{12)(jCm+Q{Dm) + (fi/2)Exn] andR,,S, are the real and 2 The primary instability region that one expects when an ex-
imaginary parts of {/2)[d,E,,+d.Ex,]. The nontrivial equilib- citation frequency is twice a natural frequency shifts as a result of
ria of (49) are the multiple parametric excitations. The classical 2:1 ratio be-
5 tween excitation and natural frequencies no longer holds, and pri-
2 2, 7 2 A2 mary parametric instability occurs at different excitation frequen-
. TSh= \/(US") 74(R”+S”)(Zi PniQ”) cies higher or lower thand, (Fig. 1).
2_ . . .
(pn)= 2R+ D) . (50) 3 Secondary resonances that are typically considered benign
noon widen substantially when a second parametric excitation simulta-
Stability analyses reveal that the limit cycle with larger amplitudeeously excites a primary instability in the same mdBg. 3).
is stable, and the one with lower amplitude is unstable. Whe&uch conditions occur naturally when the fundamental frequency
specialized to the moving string and only tension excitation, tha periodic (but not sinusoidalparametric excitation drives sec-
results of Mockensturm et dl1] are recovered. ondary instability and the first harmonic drives primary instability.

&

— 5 PnSIN2B,)+ Qq COS 26 + Sy?
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This provides a plausible explanation for the practically important B Secondary Instability Caused by Speed Fluctuatios:
case of a serpentine belt span oscillating at the same frequencyas, , ;=0

the engine firing frequency.

4 Instability regions for combination resonances of the sum

12

r__ 8' H S —
type are significantly narrower than those for primary instability. Q _wniw_n IM(Eqp)| —Crnt @nDr
For practical system damping and realistic excitation amplitudes,
a first-order approximation appears to be sufficient. Difference k 12

type combination resonances do not occur even with multiple ex- -

citation frequencies.

. Wy g
—iC=+w.D-]? — E P L
JCmn n nn| i i Qi/274wﬁ

ST+

5 The nonlinear response amplitude under primary instability

is determined solely by the excitation causing the instability and is
independent of other excitations in a first-order approximation.

+E

(53)

Ve

Transfer of energy from the unstable mode to other modes as a
result of nonlinear coupling is apparent in a numerical solution C Combination Instability Caused by Speed Fluctuatiouj:

(Fig. 7), though not captured in a first-order approximation.
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Appendix

~wpt oy, =0

Q=

wntwnn

+ ¢/ (= [Ciim+ (@n+ @) Diin)(— ] Cim+ (@n+ @) D)
(54)

Results in this Appendix hold for traveling strings and beams. D  Primary Instability Caused by Tension and Speed Fluctua-
For traveling strings ¢=0), the following relations are helpful tion: Q,=Q~2w,

(also seg30)):

Cin=(1—e 2"™0)/2, Dy =0.

A Primary Instability Caused by Speed Fluctuatiofly

~2w,, =0
O/ =2w,*¢(|—Cin+ 20Dy

k/

. 2w

_|_Jcﬁn+2wnDﬁn|2 - .

2
Ve

i=1i#l

+E

12
gl +
2 i Qi!2_4wﬁ

1)  =0=200% (o]~ iCm+ 20,Dm) *+ (&1 Eq)?
X 2w &t
_ |2 2 n '
- - : +
| Eqnl izlz,i;tl SIQiZ_4wﬁ 8w,
Kk’ 12

TC— 12
/2 _l_JCnn+2wnDnn| s
€ i=1i#l

+2( ) |Enil

E Secondary Instability Caused by Tension and Speed Fluc-
tuation: Q= Q| ~w,

! 2 ~—7n +—
& Qi,2_4wﬁ

8w,
(55)
(52)

8|’2

2
/ il

0 =0 =wy* \/(_ IM(Epn)|Enpl
Wn

n
k
- |El?

2
m(—jCpnt wnDnn)| —jCmt wnDnn|>

k

2 2
2 @n € . , 2 2 @n
f——+ — | —|—JCam+ nlél — —+ +
r%i:#l 8|Qi2_4wﬁ 30, | JICmt &y Dnn| i:;,i: gj Q/Z 4o 2 2 ( ) |Enn|
(56)
F Combination Instability Caused by Tension and Speed Fluctuaflpa:Q| ~ w,+ o,
0=0/=0,ton* \/(Slr)z(_jcﬁm+(wn+wm)Dﬁm)(_jcﬁn"'(wn'i_wm)Dﬁn)"'(sl)zEﬁmEEn' (57)
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1 Introduction

Ever since its invention, the wheel has been used primarily a
quasi-static device. Enhanced mobility and stability have be
achieved using multiple wheels, large wheels, broad wheel bas
multiwheel drives, etc. Only in the recent past, researchers prg-
posed wheels that are dynamical entities. The Gyrover propose!
by Brown and Xu[1], for example, is a dynamically stabilized
single-wheel robot that uses gyroscopic forces for steering a
stability. The Gyrover, in which the wheel and the vehicle are one
and the same, has a number of advantages over multiwhee
vehicles. Before the introduction of Gyrover, a few designs we
proposed for spherical wheels with internal propulsion mech
nisms. An omnidirectional robot comprised of a spherical whe
an arch-shaped body, and an arm-like mechanism, was propo
by Koshiyama and Yamafuji2]. In two different designs pro-
posed by Halme et al.3] and Bicchi et al.[4], a device con-
strained to roll inside the spherical cavity creates unbalance
generates motion. A change in heading is produced by turning
wheel axis. Both designs complicate the control problem by i
posing nonholonomic constraints, internal and external to t

spherical shell.

To simplify the control problem and from practical consider-
ations, we proposed a spherical robot deg|&), where the pro-
pulsion mechanism is fixed to the outer skeleton. The propulsi
mechanism is comprised of four unbalance masses that are ¢
trolled along radial spokes; the extremities of the spokes defi
the vertices of a regular tetrahedron. The control of the fo
masses to achieve a desired motion of the spherical wheel pos
complicated and challenging problem in dynamics and control. sk
get insight into this problem, we study the planar case in th
paper. We investigate the dynamics of a rolling disk with thre®"
unbalance masses, constrained to slide along radial spokes,
figured 120 deg apart from one another. For this system, show
Fig. 1, we propose to control the motion of the masses such t

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME OURNAL OF APPLIED

Dynamic Analysis of Rectilinear
Motion of a Self-Propelling Disk
With Unbalance Masses

This paper investigates the dynamics of a rolling disk with three unbalance masses that
can slide along radial spokes equispaced in angular orientation. The objective is to
design trajectories for the masses that satisfy physical constraints and enable the disk to
accelerate or move with constant velocity. The disk is designed to remain vertically
upright and is constrained to move along a straight line. We design trajectories for
constant acceleration, first using a static model, and then through detailed analysis using
a dynamic model. The analysis based on the dynamic model considers two separate cases;
one where the potential energy of the system is conserved, and the other where it con-
tinually varies. Whereas trajectories conserving potential energy are quite similar to
those obtained from the static model, the variable potential energy trajectories are the
most general. A number of observations related to the system center-of-mass are made
with respect to both trajectories. Following the strategy for constant acceleration maneu-
vers, we give a simple approach to tracking an acceleration profile and provide some
simulation results. [DOI: 10.1115/1.1344903

the disk center can have a specified constant acceleration. We also
investigate optimal transition of the disk acceleration from one
ue to another. These problems are relevant since a trajectory of
i’ne disk can be specified in terms of an acceleration profile.
Besides the mechanism comprised of reciprocating masses,
shown in Fig. 1, a number of other mechanisms can be designed
propelling the disk. For example, a heavy mass constrained to
%Jl on the inner perimeter can create mass eccentricity and cause
e disk to roll. Planar versions of the designs by Halme €t33l.
& Bicchi et al[4] conform to this category. Also, a spinning
éor mounted on the disk can generate reaction torque and cause
ie disk to roll. This mechanism, with an additional rotor that
llows control of the disk inclination, has been extensively studied
X hlers et al[6] and Yavin[7,8]. In their studies the complete
ynamics of the disk and rotors were considered, and the nonlin-
ear control problems of tracking and point-to-point stabilization
were addressed. A number of other auth@stz[9] and Rui and
gCIamroch[lO], for examplé have also addressed the stabiliza-
ion problem in the rolling disk but few have investigated the
rgjé(nami(:s of viable propulsion mechanisms.

In this paper, we first describe a propulsion mechanism for a
vertically upright rolling disk, constrained to move along a
straight line. In Section 3 we present preliminary analysis of the
g}lechanism based on a static model. Two solutions are presented
ﬁ;hthis section for uniform acceleration of the disk along a straight

g

e. The first solution identifies via-points and interpolates sinu-
ids to generate approximately constant acceleration trajectories.
jg trajectories conserve potential energy and suggest further
alysis on the basis of potential energy. The second solution is
%otimal in the sense that it minimizes a component of the kinetic
nergy. It also renders the moment of inertia of the disk invariant
ith orientation and provides greater freedom in trajectory design.
ndynamic model of the system is developed in Section 4 and
figiform acceleration maneuvers that conserve potential energy are
once again investigated. The variable potential energy trajectories
are studied in Section 5. Similar to the static model, the trajecto-
ries conserving potential energy are limacons, and identical for the

MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Jundinbalance masses. The variable potential energy trajectories,
24, 1999; final revision, April 16, 2000. Associate Editor: N. C. Perkins. Discussiofiyhich are not |imacon5, are described by five constants of motion

on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, De - : :
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-479%?’Hd present the most general solution. In Section 6 we present an

and will be accepted until four months after final publication of the paper itself in tHePtimal approach to tracking an acceleration profile along with

ASME JOURNAL OF APPLIED MECHANICS.
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simulation results. Section 7 provides concluding remarks.
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l r,sina
ing half i 2
leading ha | lagging half y ¢ A arctar( )

I’1+r2 COS«

where O< ¢<a. Since @+ ¢) will assume all angular positions
during motion,r.4 cannot remain bounded for a constant accel-
eration. Therefore, two masses will not suffice. In the next three
sections, we will show that three masses equispaced in angular
orientation, as shown in Fig. 1, is capable of maintaining constant
acceleration.

3 Preliminary Analysis Using Static Model

3.1 An Approximate Solution. In this section we present

Fig. 1 The disk with reciprocating masses an approximate solution to the constant acceleration maneuver

problem. We use the static model in Hd) but assume the mo-

ment of inertia of the system to be constant. We divide the leading

L . . half into three phases, shown in Fig. 2. The presence of a mass in

2 Description of Propulsion Mechanism phase 1 necessitates the second mass to be present in phase 3 and
A schematic description of the self-propelled disk is shown ithe third mass in the lagging half. The presence of a mass in phase

Fig. 1. The radial lines from center of the disk to the circumfer2 necessitates the other two masses to be confined to the lagging

ence represent spokes, each of which carries a lumped mass. @& Now consider the configuration in Fig. 3 where masgsis

masses, denoted by, , m,, m;, are of equal magnitudep), and on the boundary between phase 1 and phase 2. We use this con-

slide along their respective spokes. The angular position of mdiguration to determine the maximum acceleration of the disk that

m, is measured counter clockwise from the negathais, and is can be maintained for all values @f To achieve maximum ac-

denoted byd. The massem,, ms, are located 120 deg and 240celeration in this configuration, we must havg=R andr;=0.

deg apart with respect tm;. The radial positions of the massesThe instantaneous value pf is not important sincen, does not

are denoted by, , r,, andr, respectively. For ease of explana-have a moment arm. The maximum acceleration in this configu-

tion, we divide the disk area into two distinct halves: the “leadingation can be obtained from E(l), as follows:

half” and the “lagging half.” The gravitational force of a mass in .

the leading half contributes positive moment and causes the disk I 6=—mgRcos 150°.

to accelerate; the gravitational force of a mass in the lagging haih maintain this acceleration for all values @f the mass posi-

causes the disk to deccelerate. Now consider a static model of s should satisfy

mechanism, which ignores the inertia forces of the unbalance

masses. For this model, which is valid for small velocities and Rcos 150%=r, cosf+r, cog 6+ 120°)

accelerations, we have 15 cod 0—1209).

1(6)6=—mg[r, cosf+r,coq §+120°

+rzcog0—120°] 1)
where,l (6) is the mass moment of inertia of the entire assembly leading half ! lagging half
about the instantaneous center of rotatip,which can be ex- i y

pressed as

[(0) 21 4s+3MR+m(ri+r5+r3) Phasel

+2mRrqsinf+r,sin(6+120°) g
+rasin(6—120°]. (2)

It is implicitly assumed in Eq(1) that the friction force between
the disk and the ground prevents the disk from slipping. In Eq.
(2), 145 represents the combined moment of inertia of the disk and Z
spokes abouD. The unbalance masses are constrained by the
relation O<r,,r,,r3<R, whereR is the length of each spoke.
We designed our mechanism with three masses since fewer Fig. 2 Different phases in the leading half of the disk
masses cannot maintain constant acceleration. For a single mass,
this is evident from the equation of motion

11(6)6

2 .
~ ngcoss’ 1(0)214g+ m(R%+r{+2r,Rsing) Jeading half

M= lagging half

which indicates that constadtcannot be achieved with, satis-
fying O=<r;<R. For two masses, on spokes that are separated by
an anglea, the equation of motion has the form

1,(6)0=—mg[r, cosf+r,cog 0+ a)]
15(8) 2146+ 2mR+m(ri+r3)+2mRry sinf+r,sin( 6+ a)].

On simplification, we have

1,(6)6

A 2 2
leg=— —————— [log=\I{Tr5+2r,r,Ccosa,
eq mgcos(0+$) eq \/l 2 12

Fig. 3 A particular configuration of the reciprocating masses
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In the neighborhood of9=150°, we haver;=~0 andr,;~R. the approximate solution, is convenient and reduces the number of

Hence,r, can be obtained as variable terms in the moment of inertia expression in &4.
. By differentiating Eq.(5) with respect tod and substituting Eq.
(cos 150% cosh) B R (1), we obtain

ry(1509= lim R——————=—.
2(1507) go1s0e €O O+120° 2

A similar analysis can be carried out &t=210° wherem, is rysing+r;sin(6+120°) +rgsin(6—120°) =K, K= _—
between phase 2 and phase 3. At this configuration, where @
=R, andr,=0, we can show that; satisfiesr;=R/2.

Since the spokes are symmetrically located, we assume thkRerer;, r;, andrg, are the derivatives of,, r,, andrs,
mass trajectories to be identical with 120 deg phase shift from orgspectively, with respect t, | represents the moment of inertia
another. The above analysis then implies that there are six Vig-the system given by Ed2), and & denotes the specified con-
points on the trajectory, namely stant acceleration of the disk. We now make the assumption that

0 for 6=30° —30° is constant. In the ensuing analysis, we will show thagan be
’ maintained at a constant value. By differentiating EL. with

r,={ R2 for §=90°,270° respect tod and substituting Eq(5), we get
R for §=150°210° r; cosf+r,cod #+120°+r;cod #—120°=0.  (8)
By fitting sinusoids between these via-points, the approximate §0-. , , ,
Iution is obtained as Sl?smg Eqgs(7) and(8), we can express, andr; in terms ofr; as
follows:
(0 for —30°<#=<30° )
R[1—cog#—30°)] for 30°<6H<90° r,=r;— —Kcog6—120°
—Rcog 6+30°) for 90°< #<150° v3 9)
0=1 g for 150°< g=210° ® 2
ry=r;+—Kcog6+120°
—Rcog6—30° for 210°<#<270° J3
| R[1—cog6+30°)] for 270°<¢<330°. whereK was defined in Eq(7). With the objective of designing
The trajectories of, andr s can be simply obtained as the optimal trajectory, we now define the cost functional
— o — _ o 2m 1
r(6)=r,(0+120°, ra(8)=r,(6—120°). (4) J:f Ldo, LEZm(rergen) (10)
For exampley,(6) can be expressed as 0
(0 for 210°< 9<270° wherg the integrand represents the psegdo-kinetic energy, or the
) kinetic energy that accounts for the motion of the masses in the
R(1+sin#g) for 270°< <330° reference frame of the spokes. With respect to an inertial frame,
—Rcog 6+ 150°) for —30°< 9<30° the masses will undergo both translation and rotation that will
ro(6)= . . depend on the instantaneous angular velocity of the disk. During
R for 30°<6<90 constant acceleration maneuvers, the angular velocity of the disk
Rsing for 90°< 9<150° will increase linearly with time and the true kinetic energy will be
., 5 5 a function of time. To investigate optimal trajectories that are
| R[1—cog¢+150°] for 150°<6<210°. functions of §, rather than both and time, we choose the cost

nctional as the integral of the pseudo-kinetic energy.

mate solution. The trajectories of the masses are piecewise smooth® Proceed with the optimization, we substitute the expressions

with first derivative continuity. Also, they satisfy ;Olrl r, andry into Eq. (9) to rewrite the integrand in Eq10) as
ollows:

The following observations can now be made for the approxﬁEI

rysin@+r,sin(6+120°+rgsin(6—120°9=0 (5)

1 4

which implies conservation of potential energy. The moment of L= Em(3r12+ §K2[co§(0— 120°) + cog( 6+ 120°)]
inertia of the system is, however, not constant. From @4. it

can be expressed as

—4Krysing
la=lgst 3MR2+m(ri+r3+r3).

From the above equation it can be shown thais comprised of Using the Euler-Lagrange equatigii1]) from calculus of varia-
a constant term and a periodic term. Therefore, the angular acd§InS

eration of the disk d | oL L
mgRcos 150° mgR d_(_’>_(9_=
:—g|—~~40.866|—g (6) 0\ dry M
a a for the stationary value o8, we obtain the trajectory of; as

is not constant, but varies periodically. To complete the analysfs]lows:
we note that a lower magnitude of acceleration can be generated 9
by scaling down the trajectories of, r,, andrs. This can be _
A . ri=C;6— sKcosb+C
done by replacingR in Eq. (3) with R*, 0<R*<R. e 2

3.2 An Optimal Solution. In this section, we seek an opti-where C; and C, are constants of integration. Since has to
mal solution; one optimal in some sense of energy consumpti@atisfy O<r,<R, C; must be zero, an€, andK must lie in the
We impose the constraint that the potential energy is conservatthded region of Fig. 4. The optimal trajectory will therefore be a
and therefore Eq5) holds. This condition, which was satisfied bylimacon, of the form
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4 Dynamic Model: Constant Potential Energy Maneu-
| C2 vers
4.1 Lagrangian Formulation. In this section we perform a
S, (O.R) W@“’ detailed analysis of the problem using a dynamic model. To ob-
‘Qf/ Q{/‘ tain Lagrange’s equations, we first express the kinetic energy of
O < 4 the system as
g ox 1 1
. .
@@ 9%\\ T=5 | gstP+ > m(v2+v+u3)
o *
(0,0) (2K3) wherev{, v,, andvs, are the velocities of masses,, m,, and

ms, respectively, and given by the relations

Fig. 4 Shaded region indicates feasible parameter values for

2_p2p2, ;2 292 py N2 i
the solution in Section 3.2 vi=R°6°+r1{+r,°6°—2R6r, cosf+2Rr, 6 sind

v2=R26%+i2+r,26°— 2R6i , cog 6+ 120°)

, +2Rr,6? sin( #+120°)
r1=Cz~ zKcosd. 11 v2=R202+ 2+ 1,26°— 2R6i 3 cog §— 120°)
The optimal trajectories of,, r3, can be derived using E¢4). +2Rr3i92 sin(6—120°).
The moment of inertia, which was assumed constant, can now be o ) S
shown to be constant. From E@) we can show that In the kinetic energy expression above, it is implicitly assumed

that the friction force between the disk and the ground prevents
2 the disk from slipping. The potential energy of the system is ex-
— 2 2 2
lo=lgst m| 3R“+3C, +§K . pressed as

The constant acceleration of the disk can therefore be expressed as V=mg[r sin#+r, sin(#+120°) +rzsin(6—120°]. (12)

. mgK Using the expressions for kinetic and potential energies,
0= | Lagrange’s equatio(j12)) for the generalized coordinatecan be
o written as

where —0.7R<K=<0.7%R, limits the maximum value of accel-

eration to#=0.75mgR/|,. The feasible range of values kfcan

be verified from Fig. 4. - - oy oL o
Unlike the appro?dmate solution, the optimal solution results in MR(F; 0SO+T, cog 6+ 120%) +F5 cog 6-120%)

constant acceleration of the disk. The optimal solution is also +2mRg(r, sin 6+r, sin( 6+ 120°)

smooth whereas the approximate solution is piecewise smooth

with first derivative continuity. A single parametB* describes +r3sin(6—120°))

the family of approximate solutions. The particular solution where S L R

R* =R is shown in Eq(3). Two parameters;, andK, describe +2mR6(Fy Sin§-+T, sin(6+120°)

the family of optimal solutions. Clearly, the optimal solution pro- o o o

vides greyater fpr)eedom in trajectory sglection.pDespite differepnces, 3 Sin(6—120%)) + mR™(ry cosé

the trajectories for the approximate solution and the optimal solu-  +r, cog #+ 120° +r4 cog 6—120°)+mg(r, cosé

tion, shown in Fig. 5, are strikingly similar.
+r,cog #+120° +r;cog #—120°))=0. (13)

The approximate and optimal solutions in Section 3 indicate that
constant angular acceleration of the disk can be generated by pe-
; : : : riodic trajectories of the unbalance masses. This motivates us to
o8k b A e N S J seek periodic solutions from the dynamic analysis as well. We

: ‘ : : : assume 4, r,, andrj to be periodic functions of the form

lgs0+3MRRO+mMO(r2+r3+r2)+2ma(r 1 +1,f o+ 35f5)

r1=Rfyi(8), r=Rf(0), r3=Rfs(0),
0=<f.(0),f,(6),f3(0)<1 (14)

T : : ; wheref,, f,, f3 are dimensionless variables. In the sequel we
Y| opp o N 71 will establish that there exists a class of periodic trajectories for
: 0 N A ] rq, 1y, andrgs, that impart constant angular acceleration to the
: : : : disk. From an implementation point of view, radial forces pro-
04 ............... ................. ................... ......... 4 vided by suitable actuators will guarantee that the unbalance
: : : : masses track their periodic trajectories. Since our main objective
is to investigate the effect of the periodic trajectories on the over-
all motion of the disk, we do not pursue further analysis of the
: : : : : radial forces. One can easily determine these radial forces or con-
1 Y 0 535 4 trol inputs from the right-hand sides of Lagrange’s equations for
-~ the generalized coordinates, r,, andr;. To continue with our
analysis, we use Eq14) to rewrite Eq.(13) in the form

;| : R :
02F--- 54 . vvvvvvvvv PR N ’I Optimal Solution

Fig. 5 Comparison of the approximate and optimal solutions . .
for a disk of unity radius a(0)6+b(0)6*+c(6)=0
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a(6)=lgs+ MR[3+ 3+ f2+f5+2(f sind v
+f, sin(6+120°) + f 5 sin( 6— 120°))
—(f1 cosé+f, cog 6+ 120°) ©.h % 4
+14 cog §—1209))] 47
b(6) =mR[2(f 1+ f,f,+f5f5)—(f] coso+f) cog #+120° &,
+ 14 cog 6—120°)+ 2(f} sin 6+ 4 sin( §+120°) "L\\/
+f4 sin(#—120°)) + (f, cosé+ f, cog §+120°) ©0 p

+fzcoq6—120°)]
o Fig. 6 Shaded region indicates feasible parameter values for
c(#)=mgRf, cosf+f,coq 6+ 120°+f;coq §—120°) ) the solution in Section 4.2
15

For a constant acceleration maneuv'éit,)\l, we will have 6

=\,t+\,, where\; and\, are constants. We can then argu&ot cause any loss of generality and is explained as follows. Irre-

that b(6)=0, or elsef will increase with time according to the Spective of the sign oKX, X cos(f—¢) takes both positive and

relation negative values. To satisfy the constrain=0 in Eq. (14), Y

must therefore be positive. A change in signXois equivalent to

a phase shift inp by 180 deg. ThereforX is arbitrarily chosen to

be positive. The above analysis confirms thatf,,f;, and ac-

cordinglyr,,r,,r3, have identical trajectories, shifted in phase.
The trajectories in Eq(22) are limacons, similar to those ob-

b—b)\t-i-)\zc 16
=S Outha)- (16)

From Eqgs.(15) one can readily show that(6)=0 implies

(F2+ 2+ £2)+ (f, sin 6+ f, sin( H+120°) tained in Section 3.2. This is surprising since the analysis in Sec-
tion 3.2 was carried out with a static model whereas the complete
+f3sin(6—120°)) dynamic model was employed in this section. The main difference

, , R between the two trajectories are in the number of defining param-
—(f1 cosf+ 13 cog 6+120°) eters. The limacons in Section 3.2 are defined by two parameters,
11! cog H—120°)) = 17y C2andK, as seen from Eq11). In this section the limacons are
_ s cod _ ) _ao (7 defined by three parameters, nami#lyY, and ¢. The advantage
where aq is a constant of integration. Apart froin(6)=0, we of having three independent parameters is that any initial configu-
also need ¢/a) to be constant, or bothanda to be constant, for ration of the three masses can determine the trajectories and the

a constant acceleration maneuver. corresponding acceleration. From E@%5), (16), (19), and(20),
the disk acceleration can be expressed as
4.2 Uniform Acceleration With Constant Potential Energy ) mgRa,
Consider the case where bothand a are constant. Rewriting 0=— Y= (23)
a(6) in Eq. (15 as ast MR(3+ao+ ay)

where ag,a,a, can be expressed in terms of trajectory param-
etersX, Y, ¢ as follows:

+fssin(6—120°] (18) @2 1.5K243.0Y%, a;215Xcosd, ay21.5Xsine.
and from the expression @f 6) in Eq. (15), we get the identities (24)

f, cosf+f, cog6+120°) +fycoq —-120°) =y (19) While arbitrary initial conditions can uniquely define a trajec-
tory, not all trajectories will satisfy the physical constraints of Eq.

f,sin@+f,sin(6+120° + f5 sin(6—120°) = a, (14). For feasibility,X,Y must lie in the shaded region, shown in
(20) Fig. 6. This is quite similar to the constraint imposed on the pa-

wherea, and«, are constants. From EqdL2), (14), and(20) it 'ameters of the trajectory in Section 3.2, shown in Fig. 4.
is established that constant values wfnd a lead to constant _ Although initial values off,, f5, f5, andé uniquely define the
acceleration maneuvers with potential energy conservation. ¥gIectory parameterized byo,ay,a,, or X\Y,¢, and uniquely

proceed further, we differentiate E(L9) and substitute Eq20)  define the acceleration of the digk the converse is not true: A
to get given acceleration of the disk can be generated through various

trajectories.

a(0) =14+ MR[3+ agy+fy sind+f, sin( 6+ 120°)

f1 cosf+f, cog +120° +f; cog 6—120°) = a,.

I . . 4.3 Effect of Variation of Path Parameters
Substituting this result and E€RO) into Eq. (17), we get

Effect of Varying Phase Angle.Using Egs.(23) and(24), the

2 2 2\ _
(fitfa+f3)=ao. (21)  disk acceleration can be written as
Using Egs.(19), (20), and(21), the following expressions for the 1.5maRX

dimensionless variabley, f,, andf; can be obtained: o= — ~mg _COS¢ 5 —~|= ’BCO,Sd)

l4s+ 1.BMR(2+ X singp+X2+2Y?)|  u+sing
fi=Xcogf—¢)+Y X2(2/3){a’+ a3}'? (25)

f,=X cog — ¢p+120°+Y Y2 (1/3){3ay—2(a’+ a?)}V? where 8 and u are constants, given by the relations
(22) 2 9 alest 1.5MR(2+ X2+ 2Y?) (26)
fa=Xcog0— p—120°+Y P2arctatia,/a;) P=—gr += 1.5mR?X

whereX, Y, ¢, are constants. From the expressionXaihdYitis From the expression qf, and feasible values ofin Fig. 6, it can
clear that both were chosen to be positive square roots. This dbesshown that the denominator in E85) is always positive. The
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sign of # therefore depends on the sign of esor X cos¢ since V=mgR f;sind+f,sin(6+120°) + f5 sin(6—120°)].

>§ is alway_s positive. Specifically? is positi\{e if X cos¢ is N€ga- |t can be shown that satisfies—- mgR<V<mgR In compliance
tive and vice versa. With Eq¢19) and(24) it can be established it these limits and without loss of generality, we consider a
that thez-coordinate of the center of mass, relative to the center anusoidal variation inv, given by the relation

the disk, is located at ’

R V=mgRA;+B;sin(60—)]
Zem=7 [facodm+ ) +f, cog 7+ 6+120°) whereA, , B;, andy are constants. By comparing the above two
equations, we can write

+ + 60— ° . . .
fscogm+ 6-120] £, Sin 0+ f, Sin( 6+ 120°) + 5 sin 6— 120°)

=75a1=7—Xcos¢. =A;+Bysin(6—y). (28)

3
We haveb(8)=0 for constant acceleration maneuvers. Using the

The above equation implies that the magnitude and direction o ; f d in Eas.(15) and(18). th i
acceleration depends primarily on theoordinate of the center of of ?ﬁifii'r??ﬁ Ié)g.((i)(i)arned%(cee)slrt]o tﬂz.(forznan (18), the equation

mass, relative to the center of disk.

The rolling disk can acquire a range of acceleration by varying 0{1 g+ MR 3+ ap+ f4 Sin 6+ f, sin( 6+ 120°)
phase angle). From Eq.(25), the maximum and minimum values _
of the acceleration can be shown to be + f3sin(6—120°)]}
o [ it ¢=m+arcsinlin) =-mgR f; cos#+ f, cog +120°) + f5 cog #—120°].
o=1 .. , , (27) (29)
Omin 1T p=—arcsinl/u). . .
Substituting Eq(28) in Eq. (29), we get

Of course, motion with zero acceleration or constant velocity re-
quires¢p= = /2. From an implementation point of view, the roll-  6{K;+K,[A;+ B, sin(6— )]} =f, cosé+f, cog 6+ 120°)
ing disk can change during its motion by suppressing the mo-

tion of the masses for an appropriate interval of time. +f3c046-120°)
Effect of Varying ParameterX and Y. Each point in the s lastmMR(3+ag) K2 R (30)
shaded region of Fig. 6 corresponds to a certain trajectory of the = mgR ' = g

disk; each of these trajectories has a certain acceleration. Clearly, )

a variation inX and is expected to provide a range of acceleraEOr @ constant magnitude of acceleratian= G, we can then
tions. By treatingy as constant, we partially differentiagein Eq. write

(25 Wlth_ respect tox andY. Equating these expressions to zero, f, coSO+ f, cod §+120°) + f 5 cog §— 120°)

the maximumé is observed to occur at the following coordinate:

X=12(1+1443mR?), Y=0

independent of the value @. Unfortunately, this coordinate lies Ae=G(KitAKy),  Bo=GBiKy, (31)
outside the shaded reg.i.on in Fig. 6. Since the above coordinateJising Eqgs.(28) and (31), Eq. (17) can now be written as

the only location where is an extremum, we conclude that the 2, 62 e2 B

maximum feasible# occurs at a point, or a set of points on the fit T+ 5= aot+Bycod6—¢) (32)

boundary of the shaded region. Through numerical simulation Wghere it is obvious that,=|B,|. From Egs(28), (31), and(32),
determined the maximum to occur &)= (0.5,0.5). Combin- f,, f,, andf; can be solved as follows:

ing this result with the result in Eq27), we conclude that the
trajectories that produce maximum and minimum acceleration are

=A,+B,sin(6— i)

2 1
f1=5 P13 3(ao+ B, cog6— )~ 2S

Omax 1T f1=—0.5co$f—arcsin1/u)]+0.5
=1. . . ) 2 1
Omin 1 f;=0.5co$6+arcsinl/u)]+0.5 f2:§ pzig V3(ag+B,cod 68— i) —2S
_, last4.125nR , .
K="0.75mR fa=3Pa*3 V3(ap+B,cog 0— 1)) —2S
where u, obtained from Eq(26), is the value ofu evaluated at ] ]
X=Y=0.5. Instead of numerical simulation, the above result fs¥hereSandP;, j=1,2,3, are defined as
maximum acceleration can also be obtained through constrained A S N2 S A )12
optimization, S=[A;+Bysin(0— )7+ [A,+ By sin(0— )]
P;£[A+By sin(6— y)]sin 6+ (j —1)120°]
5 Dynamic Model: Variable Potential Energy Maneu- +[Ay+ B, sin( 60— ) ]cod 6+ (j — 1)120°].

vers
It can be verified from the above equation th&t, ¢ P,+ P3)

5.1 Uniform Acceleration With Variable Potential Energy ~ =0. Using this result the common term in the expressions, of
It was shown in Section 4.1 that constant acceleration maneuvéssf; can be shown to bef (+ f,+ f3)/3. It immediately follows
require €/a) to be constant. The analysis in Sections 4.2 and 4tBat the nontrivial solution fof{,f,,f3 is
was carried out assuming battanda as constants, which leads to
conservatio_n of potential energy. In an effort to generaliz_e tht_a fl:EPlJr l\/3(a0+52 cos 6—¢))—2S
results, we investigate the case of varying potential energy in this 3 3
section. We treat anda as variables whose ratio is constant. We
begin our analysis with the expression for the potential energy.
Using Egs.(12) and(14), V can be expressed as

=3Pt 3 A(ag By cod0- )25 (33
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Yem straints, 6<f,f,,f3<1, will be met. This is true for the same
reason the center-of-mass may remain bounded when individual
mass positions become unbounded.

3. Sinceay is positive, which can be shown from E®@2), the
intercept of the straight line in E¢34) on they-axis is negative,
and outside the circle defined by E&5). This confirms that the
range of acceleration of the disk, determined by the slope of the
line, is finite.

4. A feasible trajectory is described by sinusoidal variation in
both center-of-mass coordinatgs,, andz.,. This, evident from
Center of disc Egs.(28) and(31), translates to the center-of-mass position oscil-
lating along a straight line, while remaining confined to the circle
of radiusR/3 in Fig. 7. In contrast, when the potential energy is
conservedy., remains stationary. This implies that the center-of-
mass position will remain stationary.

5. From the range ofin Fig. 6, namelyX<0.5R, and expres-
sions foraq, a5, in Eq.(24), we have—0.75< a,a,<0.75. Us-
ing Egs.(19) and (20) we can therefore show that,,z., are
individually constrained to lie betweenhR/4. This indicates that
for constant potential energy maneuvers the straight line in Eq.
(34) must intersect, or be tangential to, a smaller circle of radius
R/4. This indicates that the variable potential energy case holds
the promise for higher acceleration.

Yem= (&/RGy) Zop+ (83 K - R/4

G;>G>0>G
Gpay for constant 1= 3

PE motion ——

—~— Yem= (@D K,
l

Fig. 7 A geometric interpretation of the motion of the center of
mass

2 1 6 Tracking an Acceleration Profile
f3==P3+ = V3(ap+B,cog 60— ) —2S.

3 3 6.1 An Optimal Approach to Tracking Acceleration. In
From Egs(22) and(33) it can be seen that trajectories conservin§lis section we present an optimal method for tracking an accel-
potential energy are identical for the three masses except for gf@tion profile. We compute discrete changes in acceleration over
120 deg phase shift; this is not true for variable potential energyMall intervals of time and seek to determine changes in trajectory
Also, the trajectories in E22) are limacons, described by threeParameters that minimize the cost functional
parameters. The trajectories in E§3), which are not limacons, 2w
require five parameters for their description. These parameters are J= f
All Bll G, lﬂ, andao

5.2 Motion of the Center of Mass. The coordinates of the The basic trajectories can be chosen to be the limacons i22q.
center-of-mass of the system can be written as or the more COmpleX forms in qug) For Slmp|ICI'[y, we choose
the limacons which are described by fewer parameters. Though

the limacons conserve potential energy, we do not expect the po-
tential energy to remain conserved as we track an acceleration
profile. This is true since the limacon parameters will continually

(Af))?de.
0

R
Zem=— §[fl cosf+f,coq 0+ 120°) +f5 cog 6—120°]

R . . . ) . change during acceleration tracking. While a different cost func-
ycng[flsm 6+ f5sin(6+120°) + f3 sin(6—120°]. tion could have been chosen, the cost function above promises to
minimize the overall change in the shape of the trajectory, which
Using these relations, EG29) can be written as is identical for all three masses. On differentiatiihgin Eq. (22),
we obtain

01 g+ MR(3+ ap) + 3MR Yt =3 m-
Host MR(3+ o)+ MRt} =3mMy2 Af,=cog 0— p)AX+XSINO— p)AG+AY.  (36)

For a constant acceleratidh=G, this reduces to - . .
Substituting Eq(36) into the expression ai, we get

ycm:RiGZCm* gKl (34) J=mAX2+ (XA $) 2+ 2wAY2.
) ) ] We now rewrite Eq(23) as
whereK; was defined in Eq(30). Also note that the distance of
the center-of-mass from the disk center is constrained by the re- = Bay LA3h las 37)
lation vta,tay . mR
Y2t Z2n=(RI3)2. (35) A change ing can therefore be expressed in terms of changes in

S ath parameters, as follows:
The proof of the above relation is simple and left to the readé?. P

Some observations on the motion of the disk, evident from Egs. . 9 92 02
(34) and(35), are now discussed with the help of Fig. 7. Ao= o Aay— By Aa,— Bay Aag. (38)
1 1 1

1. Straight lines with different slopes represent different mag- _ . .
nitudes(G) of acceleration. A line with a positive slope represent%UbSt'tUt'ng Eqs(24) and (38) into the expression af, we get

acceleration and a line with a negative slope represents decelera- 4,
tion. A horizontal line in Fig. 7 represents constant velocity moJ= - (A >+ Aay?)
tion.

2. A feasible trajectory of the disk requires the straight line in o 2 (34 52 _ 52
Eq. (34) to pass through the circular region defined by B%). LT (866~ 4a,6")Aay— (3 ‘;az)z Aap—3pA0a,) )
However, this is not sufficient to guarantee that the physical con- 2 [Bag—2(aj+aj)]
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By computing the partial derivatives dfwith respect toaq,a-, 25 ;
and equating them to zero, we obtain optimal change in pat
parameterd a; ,Aasy,
2L
2% OnYs¥a
L8mtoyi(5tyy) T2 8mt9%(v5t03)
39) T 15
wherey,, v,, vs, andy, are defined as pd
T 1 4 : ;
- = + — -
n 3a0—2(a§+a§) vs 32
B 4 BAbay 05l
Vo= T T S Ya=— - ’
6 3 62
Though it may seem that «; grows unbounded wheé is zero, 0 , , , , .
this is not the case. By integrating the expression¥fay , we can Y 10 20 30 40 50 60
show that the following relation is true: time (s)
1 ,32 172 48 Fig. 8 Variation of trajectory parameters during a sinusoidal
=g =+ 1-= V) L variation of acceleration
ay 6? 3 (3-8v)6

whereo is a constant of integration, aggland v are constants that
have been defined in Eq&6) and(37), respectively. Clearly, as

6 tends to zerog, tends to zero and «, remains finite.
The optimal change in parameteg, namelyA «g, can now be 08}

computed from Eq9:38) and(39). The changes in parameters,

a,,aq, can be translated into equivalent changeX i, ¢, using 0.6

the following equation: 0.4l |
AX cos¢ 0 Xsing\ ! Aay 02l
AY | = 3 sing 0 Xcos¢ Aay (40) ol i

U

Ad 2X 4y 0 Aag A i

which was derived from Eq22). The matrix in Eq(40) becomes oal |

singular when eitheX or Y is zero. This should not be of concern
sinceX=0 andY=0 are limiting values for a feasible trajectory, .os|
as evident from Fig. 6. The matrix is also singular wien1 and
¢= /4. This point clearly lies outside the range of feasible pa- 081
rameter values and should also be of no concern. After computing . . . ,
the changes iX,Y,¢, the change in the trajectory of, can be o -0.5 0 0.5 1
computed from Eq(36). The changes in trajectories wf, andm,
can be computed similarly.

Limacon 2
(t2)

Fig. 9 Normalized trajectories of the unbalance masses at two
specific instants of time

6.2 Simulation Results. In this section we present simula-
tion results of the disk tracking a sinusoidal acceleration profile.

The initial angle of the disk in radians, and position of the thregjnce X represents the radial distance of the center-of-mass, it

masses in dimensionless variables are given as assumes maximal values for both the maximum and minimum
- o _ - acceleration. However, since magnitudes of the maximum and

6(0)=08, f,[6(0)]=0.7, f;[6(0)]=0.4, f5[6(0)]=0.3. minimum acceleration are differeq®.5 rad/$ and —10.5 rad/,

The values ofxg,a;, e, are first computed using Eqel9), (20), respectively, the peaks differ in magnitude. The shape of the

and (21). Subsequently, the initial acceleration of the disk is ofiacon in Eq.(22), which changes as a function of the trajectory

. ) . ) ) arameters, is shown in Fig. 9 for two specific instants of time,
tained using Eq(23) as 6(0) = —3.28 rad/4 For our simulation, {)1:14.0 seconds an‘q=34.g seconds. AtFt)hese instants of time,
we choose the acceleration profile

the limacon is seen to have the following parametric representa-

9=—2.0+8.5siM0.5—) (a1) Uons:
. . - _ . 0.229 cos6—114.8°9+0.467 for t=t;
with the proper choice of that satisfies the initial condition f1(0)= .
6(0)=—3.28rad/4 We also choosg2 —(g/R)=—100 in SI 0.435c080—24.3°+0.448  for t=t,.

units, andv23+ (I4s/mR2)=4.5. The simulation is carried out .
over 60 seconds using a time-step of 0.001 second. At each time- Conclusion
step the trajectory parametexsy, are verified to lie in the shaded This paper investigates a self-propulsion mechanism comprised
region of Fig. 6. This guarantees that physical constraints are mftthree unbalance masses for a vertically upright rolling disk
violated. constrained to move along a straight line path. It is shown that
The simulation results are shown in Figs. 8 and 9. Figure 8 isti@jectories of the unbalance masses can be designed to propel the
plot of trajectory parameters,Y, and ¢ for the acceleration pro- disk with a wide range of accelerations. It is also shown that the
file in Eq. (41). As expected, the trajectory @b has the same disk can track an acceleration profile while minimizing an appro-
frequency as that of the acceleration profile. The trajectopy isf priate cost function. In the preliminary analysis, where a static
more interesting and has two peaks in every cycle of acceleratiomodel was used, uniform acceleration maneuvers assumed conser-
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High-Frequency Low-Loss
Ultrasonic Modes
in Imbedded Bars

B. N. Pavlakovic The dispersion relationships of a system comprising a circular bar imbedded in a solid
medium having a lower acoustic impedance than the bar have been predicted. A generic
M. J. S. Lowe study of such systems has been undertaken, motivated by a particular interest in the case

of a circular steel bar imbedded in cement grout which has application to the inspection
P. caWIEV of tendons in post-tensioned concrete bridges; measurements to confirm the predictions
. o have been carried out for this case. The attenuation dispersion curves show a series of

Department of Mechanical Epgmeermg, attenuation minima at roughly equal frequency spacing. The attenuation minima occur at
Impgr|§! College, the same frequencies as energy velocity maxima and they correspond to points at which

Exhibition Road, the particle displacements and energy of the particular mode are concentrated towards
London SW7 2BX, UK. the center of the bar so leakage of energy into the imbedding medium is minimized. The

attenuation at the minima decreases with increasing frequency as the energy becomes
more concentrated at the middle of the bar, until the material attenuation in the bar
becomes a significant factor and the attenuation at the minima rises again. For the
particular case of a steel bar in cement grout, the minimum attenuation is reached at a
frequency-radius product of about 23 MHz-mm. The frequency-radius product at which
the minimum attenuation is reached and the value of the minimum attenuation both
increase as the acoustic impedance of the imbedding medium increases.

[DOI: 10.1115/1.1347995

1 Introduction wave propagation have occurred much more recently. In the mid
Oth century, a significant amount of research was performed on
Ne modes of solid bars. Much of this work concentrated on the

clude pipes buried in soil, fibers imbedded in a polymer matritS€ of rods as acoustic _vvavegmdes for use in delay lines that
and steel tendons buried in grout or concrete. Guided acougtft!!d Pe used in electronic devices, such as radar. In 1943, Hud-
waves offer a potentially attractive solution to these nondestrug" Used shell approximations to study the dispersive nature of the
tive evaluation(NDE) problems as they can be excited at ondndamental flexural mode in a solid cylind¢i0]). The longitu-
point on the systenfoften at an endand will then propagate dinal modes of a bar were first examined by Davies in 1948
along the bar or pipe, which acts as a waveguide. ([11]). Later work by researchers such as Pao and Mindlin
Propagation distances of many tens of meters can readily 3,13, Onoe et al[14], and Meeker and MeitzIgi 5] fully de-
obtained in steel pipes or bars in #iL—6]) since in this case the veloped all of the branches of the complete three-dimensional
attenuation is predominantly controlled by the material attenuBtoblem of a solid circular cylinder in vacuum. The dispersion
tion of the steel, which is relatively low; the leakage into th&urves for a hollow isotropic cylinder were definitively treated by
surrounding air is minimal. When the waveguide is surrounded t§§azis in 1959[16]). Fitch ([17]) matched Gazis’ predictions for
a fluid, leakage of energy into the fluid by radiation of longitudiaxially symmetric and nonsymmetric wave propagation with ex-
nal waves is possible when the phase velocity of the guided moperimental data. Later researchers such as Kumdy19 have
exceeds the phase velocity of longitudinal waves in the fluiéxamined the effect of fluid filling on wave propagation in cylin-
When the waveguide is imbedded in a solid, leakage by botters. In 1965, Mirsky expanded Morse’s wdfR0]) on axisym-
longitudinal and shear waves can occur which leads to very highetric wave propagation in transversely isotropic solid cylinders
attenuation rates, especially when the acoustic impedances of #hel Gazis’ exact nonaxisymmetric isotropic wave propagation so-
waveguide and the surrounding solid are simi[&). lution ([16]) so that cylindrical wave propagation in transversely
An enormous amount of work has contributed to our currefotropic materials could be studig€®1]). Subsequently, several
understanding of cylindrical wave propagation. The following repther authors have examined propagation in transversely isotropic
view highlights some key papers, but it is far from comprehennds and cylinders, for example Xu and Daf2®], Dayal [23],
sive. C_Iyllnd(lcal wave propagation problems were first studquagy[24], and Berliner and SoleckR5].
numerically in the late 19th century. Pochhamrféfrand Chree | aaky cylindrical systems have been much more difficult to
[9] were the first researchers to investigate the propagation fhqel than their free counterparts. Much of the difficulty comes
guided waves in a free bar mathematically, and their names ?gm the need to calculate complex Bessel functions, which until
[

It is frequently necessary to inspect a long length of bar or pi
imbedded in a surrounding fluid or solid medium. Examples i

St'". assquated with the equation that des.crlt‘)es the queg 0 e?:ently were not readily available but which can now be obtained

solid cylinder. However, most of the applications of cylindrica 26]). Therefore, early work, such as that conducted by Thurston
Comibuted by the Abplied Mechanics Division ofE A % [27], concentrated on portions of the dispersion curves that could

ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF - :

MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED be calculated using qnly r_eal Bessel_funCtlonS' However, more
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erliner and Soleck[25,31] has looked at wave propagation in
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ASME JOURNAL OF APPLIED MECHANICS. transversely isotropic rods that are immersed in a fluid. A recent
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Table 1 Material properties used in analysis

Longitudinal Shear bulk
bulk wave wave
Longitudinal Shear attenuation, attenuation ag
Density velocity, ¢, velocity, cg a (nepers/ (nepers/
Material (kg/nr) (m/s) (m/9 wavelength wavelength
Steel 7932 5960 3260 0.003 0.008
Grout 1600 2810 1700 0.043 0.1
Epoxy 1170 2610 1100 L e
Glass 2600 5570 3520
Cast iron 7100 4500 2500

paper by Nayfeh and Nagy32] considers leaky axisymmetric combined. The solution is valid for both axisymmetric and non-
waves in multilayered transversely isotropic fibers that are imbedxisymmetric wave propagatidiongitudinal, torsional, and flex-
ded in a solid. ural modegand can model leakage into a solid or liquid medium.
The work described here was motivated by the need to inspecfThe software is based on the global matrix method for the
the tendons in post-tensioned concrete bridges. This requiremanalysis of multilayered structures that overcomes the problem of
was highlighted by the collapses of the Ynys-y-Gwas bridge instability at high frequency-thickness products commonly asso-
South Wales in 1985[33]) and of a post-tensioned bridge inciated with the Thomson-Haskell transfer function technique
Palau([34,39). In a post-tensioned construction, the bridge gain§38]). The field equations for cylindrical systems are based on
its strength from the tensioning of internal tendons after the cothose of Gazid16]. The derivation for a transversely isotropic
crete framework of the bridge has already hardened. The tendonaterial closely follows the technique of Mirsk21], incorporat-
can be single wiregusually found in older bridgesor strands of ing adaptations similar to those used by Berliner and Sol&i
seven wirequsually found in newer bridgesThe wires are fre- All the predictions presented here were produced using the DIS-
quently 5 or 7 mm in diametdrlthough they can be much larger PERSE software. Further details of the derivations and the soft-
and the strands are typically 12—15 mm total diameter. The temare implementation can be found [i#40].
dons are located in metal or plastic tubes called ducts, which will The material properties for steel and cement grout used in the
often hold several individual tendons. Corrosion protection for thenalysis are given in Table 1. The values for steel were obtained
tendons is provided by filling the ducts with grdigement, water, from the literature[41]) while the longitudinal and shear veloci-
and possibly additivgsonce the tendons have been tensionedies in grout and the longitudinal wave attenuation were measured
However, large air voids can be trapped in the grout. Over tintn samples made at Imperial College with a water/cement ratio of
these voids can fill with salt water as de-icing salts leach through6. The shear wave attenuation was too high to be measured
small cracks in the concrete or joints between segments of thecurately and the value given in Table 1 was estimated. How-
bridge. Contact with salt water causes the tendons to corroekeer, its precise value has little effect on the rate of leakage from
quickly and can lead to the failure of the bridge. An effectivéhe bar and so does not significantly affect the results presented
nondestructive test method needs to be able to detect the onsetexe. Table 1 also gives the properties of epoxy, cast iron, and
corrosion in the tendons, or the complete break of one individuglass that were used to study the effect of changes in the acoustic
tendon of the several that are present in each duct. Some empiriogpedance of the imbedding medium. Since the attenuation of the
work has been carried out on this and analogous prob[887  imbedding medium has only a secondary effect on the predictions,
but the nature of the propagating modes has not been determirtedse materials were modeled as perfectly elastic. Except where
Since the work originated as a study of the post-tensionathted, all the results are for a steel bar imbedded in an infinite
bridge inspection problem, this paper concentrates on the specé#iiace of grout. This is a reasonable approximation to the practical
case of a steel bar imbedded in grout. However, changes in ttese of a bar imbedded in a cylinder of grout when the cylinder
behavior of the guided modes as the impedance of the imbeddufigmeter is much larger than the bar diameter.
medium is varied are investigated and the analysis and form of theThe mode names used in this paper follow the format of Silk
results is applicable to other systems comprising a wire/bar irand Bainton[42]. All the modes which are discussed are propa-
bedded in a solid material that has a lower acoustic impedang&ting along the axis of the imbedded bar0,n) modes are
than that of the bar. The aim of the work was to identify modesxisymmetric modes having zero circumferential displacement,
which have a minimum of attenuation as they propagate along tvdile F(m,n) modes have displacements varying as ©co8
waveguide formed by the bar, and so to maximize the length afound the circumference of the bar. For both types of modes, the
the system that can be inspected from the end of the bar, or fre@cond indexn, is used to sequentially number the modes of a

any access point that can be created along its length. given type. In general, modes of a higher ordei’ ‘exhibit more
) ) complicated displacement profiles through the diameter of the bar.
2 Wave Propagation Solution Method Torsional modes are not considered in this paper.

Each solution for wave propagation in cylindrical systems cite, -
in the previous section applies to a limited range of problems. For Possibility of Non-Leaky Mode
example, the solution presented in Berliner and Solecki’s work The ideal solution to the problem of inspecting an imbedded
([25]) only accommodates a single layer and does not considdructure would be to find a mode that would propagate along the
materials that are imbedded in a solid. The excellent work sfructure without leaking energy into the surroundings, so reduc-
Nayfeh and Nagy[32]) allows an arbitrary number of layers anding the attenuation and making it possible to inspect a long dis-
the possibility of imbedding the structure in a solid; however, iiance along the structure from a single transducer position. This
does not model nonaxisymmetric wave propagation, or immersipossibility has been investigated for the case of steel imbedded in
in a fluid. The authors have developed general purpose softwatement grout. Initial predictions were done on the analytically
DISPERSE, for the prediction of the dispersion curves of systermalatively simple case of a flat steel plate imbedded in grout and
having either flat or cylindrical geometry with an arbitrary numbeshowed that a non-leaky mode does exist for this system, as dem-
of layers([38,39). Each layer can be an elastic isotropic materiahnstrated in Fig. (&) where it can be seen that at low frequencies,
an isotropic material with material damping, a transversely isotrthe a;, mode, which is similar to th€(1,1) mode in a bar, has a
pic material, or a fluid. Different material types can be easilgon-leaky section where its phase velocity dips below the shear
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70 ? ®) Fig. 2 Phase velocity dispersion curves for F(1,1) mode of
‘ steel bar imbedded in “grout” of varying density (densities
6.0- L(0,1) ; 3
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\‘\\/ g /md)
5.0-
Z 401 sity is varied. In this case, the phase velocity is reduced to values
§ | Grout Longitudinal Velocity : well beIOV\_/ the bulk shea_lr velocity in the “grout a_nd the non-
E304 A — ;— leaky section covers a wider frequency range than in the cylindri-
- \ cal case.
200 T N It should be noted that even if a non-leaky mode had been
; \ N L found, its attenuation would not be zero. This is illustrated in Fig.
1.0 4 Grout Shear Velocity k X . . s
| F(1,1) ! 4 which shows the attenuation and phase velocity dispersion
00 | curves for theag mode of a steel plate imbedded in grout corre-
0.0 0.5 1.0 15 20 sponding to the phase velocity relationships of Figy)1but only
Frequency-Radius (MHz-mm) plotted up to a frequency-thickness product of 0.4 MHz-mm. The

attenuation is plotted on a nondimensional Nepers-m/m scale so
for a particular plate thickness, the attenuation per meter is given
by the value read from the graph divided by the thickness. The
attenuation rises sharply once the phase velocity exceeds the bulk
shear velocity in the grout, but even in the non-leaky region below
eiit?tis, there is significant attenuation. The finite attenuation in the
non-leaky region is primarily due to energy dissipation in the
rout; this is possible because although there is no radiation into
e grout, an inhomogeneous wave is present in the grout adjacent
the plate and the model includes the damping properties of the
bedding material. The wave fields in the steel and grout are

Fig. 1 Phase velocity dispersion curves for (a) steel plate im-
bedded in grout; (b) steel bar imbedded in grout

bulk velocity of the surrounding medium. However, as Figh)1
shows, this non-leaky section does not exist for the equival
cylindrical system; thé&(1,1) mode could not be found below the
bulk shear velocity in the surrounding medium. Mathematically
is probable that the mode does continue from the point at whic
reaches the bulk shear velocity, but it does not go into a non-lea,
region; instead, it continues at a phase velocity equal to the bul L2 20
shear velocity and modes having a phase velocity equal to one> ‘an in Fig. 40.)' T.he;se. Imodgfshape plots 'ﬁd'cﬁtekthat thfe ?]UI‘
the bulk velocities cannot be traced using the global matri “plane (w) motion is fairly uniform across the thickness of the

: . Steel plate, while the in-plan@)) motion varies roughly linearly
Vrvﬁlt;? ?S([gﬂ)” a':rotijl?rtgesr% ijg'iﬁ’)aaﬁgtshows thé.(0,1) mode across the plate. This is as expected for &dgemode at low fre-
O .

The existence or nonexistence of non-leaky modes is a to&gencies where it is primarily a bending mode. Both the in-plane

that warrants more research. The parameters that control the aud Cut-of-plane displacements are continuous across the steel-
out boundaries and then reduce exponentially with distance into

istence of a non-attenuating guided wave that exists at the intgnF-
face of two semi-infinite solidéthe Stoneley wave have previ-
ously been studied and expressed in an explicit fg#43,44).
However, this knowledge has not been expanded to include finite 2.00
thickness plates and cylinders. The derivation and experimental
confirmation of the comparable conditions for an imbedded bar ‘ .
and plate would be very valuable in the design of ultrasonic test- 1.80 | }’I;’Lgkrgﬁfa”’doc“y
ing systems. 1

Although the reason for a non-leaky mode section appearing in
the Cartesian system and not in the cylindrical system is not com-
pletely understood, examination of related cases provides some
insight. Figure 2 shows the calculated phase velocity dispersion

curves for the cylindrical system of Fig(l), but with the density A ////\ ~800
of the “grout” reduced from 1600 kg/rhto 500, 600, 700 and RN S
800 kg/n?, the bulk wave velocities being kept constant at the i ‘\\\\ 600
values given in Table 1. A non-leaky section appears, but as the ! *\//<500
itV i ich it exi 1.20
density increases, the frequency range over which it exists reduces 000 010 020 030 040 0.50

and the minimum phase velocity seen in the non-leaky region
approaches the bulk shear velocity in the grout. There is a discon-
tII’IUIty |n eaCh curve as |t crosses the bulk Sheal’ Ve|OCIty |n thﬁg 3 Phase Ve|0city dispersion curves for ao mode of steel
“grout.” For comparison, Fig. 3 shows tha, mode dispersion plate imbedded in “grout” of varying density ~ (densities shown
curves for the Cartesian system of Figallas the “grout” den- in kg/m®)
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Fig. 4 Dispersion properties for  a, mode of steel plate imbed-

ded in grout (a) attenuation; (b) phase velocity; (c) mode shape . .
at minimum phase velocity  (position A in (b)) 0 10 20 30 40 50
Frequency-Radius (MHz-mm)

o
>

grout; this is characteristic of an inhomogeneous waFgure
4(c) only plots the motion in the grout to a distance of 10 plate

thicknesses from the plate surface, but the trend continues beyond @6
this point) 8 ¢
4 High-Frequency Modes 5 4 ! "“ ‘9‘\ .
Having demonstrated that there is no non-leaky section of the % ] UL
F(1,1) mode for the steel bar imbedded in grout for the case of 5
& 2

the real properties of Table 1, attention was turned to the higher
frequency modes. Figuresd, 5(b) and 5c) show the phase,
attenuation, and energy velocity dispersion curves of all the
L(0,n) modes of a steel bar imbedded in grout up to a frequency-
radius product of 50 MHz-mm. The energy velocity rather than
the group velocity has been plotted in Figcpbecause, while the
two are equivalent in a lossless or weakly attenuative system, the 1.0
group velocity is not well defined in regions of high attenuation
([45]). A definite pattern emerges in the attenuation dispersion
curves of Fig. Bb). There is a series of modes that have sharp
attenuation minima at higher frequencies. The value of the attenu-
ation at successive minima decreases up to a frequency-radius of
about 23 MHz-mm(point B) and then increases slowly.

The surprising finding that the minimum attenuation is seen at a
relatively high frequency can be explained by studying the mode
shapes. Figures(& and Gb) show the axial and radial displace-
ment and strain energy profiles across the bar corresponding to the
two attenuation minima markedandB in Fig. 5. The motion and
strain energy is concentrated at the center of the bar with very 0.0 @ . ‘ ""“ ,
little motion at the interface with the grout. This limits the leakage 0 10 20 30 40 50
and so explains the relatively low attenuation. An example of the Frequency-Radius (MHz-mm)
mode shape away from the attenuation minima is shown in F| ) .

6(c). Here there is significant displacement at the surface of t |5b Dispersion curves of axisymmetric ~ (L(0,n)) modes of
bar and so more leakage will occur. As the frequency-radius prg gce! bar imbedded in grout.  (a) phase velocity; (b) attenuation;

) energy velocity; (d) as (b) but zero steel attenuation.

uct increases, the strain energy at the attenuation minima is in-
creasingly concentrated in the middle of the bar, and up to about
23 MHz-mm, the minimum value of attenuation decreases. Above
23 MHz-mm, the strain energy at the attenuation minima contin-

ues to be increasingly concentrated in the middle of the bar, but
the actual value of the attenuation rises as material attenuation in

0 4 d .
0 10 20 30 40 50

1t
|,‘ m}‘*ﬂ?‘i

0.8

0.6

0.4

ll gy
ll lllln
| llllllxlllﬂnnlm'"'

0.2

u
Hlli
" A i NN
' i I\llllll \lnlmlﬂ\lfn'ﬁ!:'n‘x' i

Attenuation - Radius (dB-mm/mm)

70 / Vol. 68, JANUARY 2001 Transactions of the ASME



Position

Position

+r

Position

Normalised mode shape

Fig. 6 Mode shapes corresponding to points marked on Fig. 5.
(a) point A; (b) point B; (c) point C. (—— axial displacement,
— radial displacement, shaded—strain energy. Strain energy
plotted in -ve direction to avoid confusion with axial displace-
ment. )

before the loss due to material attenuation approaches the loss due
to leakage. The attenuation dispersion curves for the case of zero
steel attenuation are shown in Figd§ it can be seen that in this
case, the minimum attenuation reached by successive minima
continues to decrease. Thé0,2) mode has the lowest attenuation
when the attenuation of the steel is set to zero, whereas its attenu-
ation was much higher in the real case of Fi¢h)5A numerical
study showed that the attenuation of this mode is dominated by
the shear wave attenuation in the steel, whereas the longitudinal
wave attenuation is more important in the higher order modes.
Since the shear wave attenuation of steel is higher than the longi-
tudinal wave attenuation, removing all the attenuation has a larger
effect on modes whose attenuation is dominated by the shear
wave attenuation.

It is interesting to note that the attenuation minima coincide
with the energy velocity maxima. The same maxima in energy
velocity exist for modes with zero attenuation in a free, elastic
bar, so the energy velocity is not linked to the attenuation. The
energy velocity reaches a maximum in this region because the
phase velocity is just above the bulk longitudinal wave speed of
the fastest materigalstee) so the longitudinal partial wave is di-
rected almost parallel to the bar. In addition at this point, the ratio
of the amplitude of the longitudinal partial wave to the shear
partial wave in the steel is greater than at any other location. The
higher frequency flexural{(m,n)) modes also have attenuation
minima similar in form to those of the axisymmetrit (0,n))
modes shown in Fig. 5. However, the actual values of attenuation
at the minima are higher for the flexural modes than for the axi-
symmetric modes.

The energy velocity curves of Fig(& show that the first 11
energy velocity maxima, which relate to the attenuation minima of
Fig. 5b), correspond to the first 1L(0,n) modes in sequence.
However, all the subsequent maxima correspond toLif®12)
mode. This is connected to the behavior of the phase velocity

the steel becomes more significant. Investigations with differedispersion curves of Fig.(& which are shown expanded in the
assumed values of steel bulk wave attenuation showed that thgion of the steel longitudinal velocity in Fig(a. (The curves
frequency at which the lowest minimum occurs increases as tbeFig. 7(a) were calculated for zero material attenuation in the
steel attenuation decreases. This is as expected since at logreut, but this makes minimal difference to the resul$e rate
values of steel attenuation, a higher frequency has to be reacléd¢hange of phase velocity with frequency of the first 11 modes

7 (@ \ 7 )
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Fig. 7 Phase velocity dispersion curves for steel bar imbedded in

Frequency-Radius (MHz-mm)

(a) grout; (b) epoxy; (c)

glass; (d) cast iron. Imbedding medium has zero attenuation in these plots.
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1.0 Table 2 Minimum attenuations with different imbedding media
and frequencies at which they occur. In these predictions the
= imbedding media have zero-bulk wave attenuation.
£ 0.84
g Frequency at which
g minimum
g 0.6 Minimum attenuation  attenuation reached
K] Imbedding material (dB-m/m) (MHz-mm)
=
& 041 Cast iron 0.225 345
- Glass 0.211 30.7
= Grout 0.159 22.9
§ 0.24 Epoxy 0.148 21.0
Q
<
0.0 T 7 T T
0 10 20 30 40 50
Frequency-Radius (MHz-mm) not shown in Fig. 8 to avoid over-complicating the diagram. Table
) o ) ) ) 2 shows the minimum attenuation reached in the four cases and
Fig. 8 Attenuation dispersion curves of first “crossing mode” the frequency at which it occurs. Thus, as the impedance of the
of steel bar imbedded in cast iron, glass, and grout.  (Grout  jnpedding material increases, the value of the minimum attenua-

case shown dotted for clarity. ) tion increases and it occurs at a higher frequency.

reduces as it approaches the steel bulk longitudinal velocity bat EXPerimental Investigation
the curve then carries on towards the bulk shear velocity. In con-g ¢ Specimens and Setup. The experimental investigation

trast, theL(O_,lZ) mode curve does not carry on t_owe_lrds the b,”%as designed to verify the predictions of the existence of rela-
shear velocity but remains above the bulk longitudinal veloCityy oy 1oy loss modes in the steel-grout system. The small surface
crossing the curves of the higher order mOdeS' This mode CrOSS{fighlacements in the mode shapes shown in Fig. 6 indicate that it
behavior has previously been observed in the case of plastic pigjgs |4 pe difficult to excite the low attenuation modes by applying
Wr']th h'gz materlﬁl attenuation in vacuu((!jﬁ46]r3 Whe:je it ;Vi:)‘f' surface tractions to the circumference of the bar. However, they
shown that as the attenuation increased, the mode d should be relatively easy to excite by applying an axial force to
hence frequendyat which the crossing was first observed "®he end of the bar.
d”g?d- b 7 d 7d) sh h locity di . Two test specimens were constructed, both comprising an
igures Tb), (g) an E ) s ?vlg_p aks)e ve ﬁm;y 'Sp?f'ons.l-mm diameter mild steel bar at the center of a plastic pipe filled
curves corresponding to those o |gaY ut with the steel bar grout. The pipe had an internal diameter of approximately
imbedded in epoxy, glass and cast iron, respectively. In order {§4 mm and so was similar to the ducts used in post-tensioned
confine the study to the effect of the elastic properties of t"ﬁidges. The grout had a water to cement ratio of @6 addi-
imbedding medium, all the imbedding media were modeled wify g 41 was pumped into the plastic pipe using a small version
zero material attenuation; the steel attenuation was as given the pumps typically used in grouted tendon construction.
-'\r/l?_?le 1 In ﬁ_[l)ox_y, tlhe m_ode crossmgbflrst fsccl\L/Jlr: at arour(ljd' ightly corroded steel bars were used to improve the bonding
Z-mm, while in glass it occurs at about Z-mm and Whatyveen the steel and the grout. The grouted sections covered
cast iron, _the first higher-order mode Crosses subseque_nt MOLHBut two meters of the bars, leaving sections around 50 mm long
and a family of modes whose phase velocity is asymptotic to theqging from the grout at each end. For one of the specimens,
bulk longitudinal velocity, rather than the bulk shear velocity, ca} o par was undamaged, while for the second specimen, notches
be seen. This behavior is exactly analogous to that seen in pla%l&e cut approximately ’500 mm from each end of the b’ar The
plates with different degrees of material attenualiete]). How-  \iches were created with a saw, one cut being 2 mm deep while
ever, in the case discussed in this paper, the loss mechanism GAR- ¢ at the other end of the bar' was 4 mm déep, about half
trolling the mode crossing is leakage into the surrounding Mgy through the bar The notches were not covered when the
dium, rather than material attenuation. Around realistic values fBFout was poured so they were probably filled with grout
steel such as those given in Table 1, the bulk wave attenuation inl'he tests were performed using a LeCroy 9101 arbitra;y wave-
the imbedded bar has little effect on the frequency-radius produgt., generator that sent a windowed toneburst to a standard 5
at which the mode crossing phenomenon first occurs; it Woul,, center frequency, unfocussed ultrasonic immersion trans-
have an effect if it approached the values seen in highly attenygs e (K rautkramer Branson 0.5-inch diameter, 5 MHz alpha se-
t'r\]/e ?Iastlcs.dln tge glass and ((j:ast 'Foffﬁ g:ase?] of Fl@Siah_d 1d), ries) via a custom-built power and receiver amplifier that has
]E e first mob € does SOE tenh to in Imlt_e ph ase velocity ath? Ise-echo capabilities. The output voltage from the power ampli-
re%qency, ut instead t ? phase ve _?rcl'.ty r?s a maX|mur:n % T was approximately 55V peak-peak. Both through transmission
Le.n Ing té)bzeﬁ a; ﬁerodrl(\elquegcyb. IS p gr)omenoré as D&EBs, with the transmitting transducer at one end of the bar and the
( |sc;]uss? y Nay ef 'gn agy2] h |scont|InU|_t|es ?an e jesegreceiver at the other end, and pulse echo tests with a single trans-
in the glass case of Fig.(9) at a phase velocity of around 5.5, cor acting as both transmitter and receiver at one end of the bar

km/s. This corresponds to the bulk longitudinal wave velocity i}ere carried out. The transducers were gel coupled to the plane

co'r:r_esponglnﬁ Ieakéﬂg wt?ves t:_ecor:;_e mhqmogeneou?. the fi sctope. Although relatively low attenuation minima are predicted
lgure © shows the altenuation diSpersion curves for the Tikalssme modes, it is necessary to measure signals which attenuate
mode displaying the mode crossing behavior for steel imbeddedy) ey 100 dB ovea 2 mpath length if the dispersion curves are
cast iron, glass, and grout corresponding to the phase velogiype measyred over a significant frequency range away from the
plots of Fig. 7. Itis clear that the minimum attenuation reached {f\inima. In cases where the signal-noise ratio was low, the re-

the grout case is lower than that reached in the other materials ?:réﬂ/ed signal was passed through an analogue band-pass filter
that it occurs at a lower frequency. The low attenuation minima%fore being fed to the oscilloscope

the grout case shown in Fig. 8 do not extend below about
MHz-mm because another mode becomes the lowest attenuatioB.2 Results. Figure 9 shows the results of through transmis-
mode at lower frequencies, as shown in Fig. 5. The epoxy casesien tests on the undamaged bar. The excitation signal was a
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P

P Fig. 11 Predicted (----) and measured (——) normalized at-
B s,

Z

4 tenuation curves for 8.1-mm steel bar imbedded in grout

Fig. 9 Spectrum of response of signal transmitted through 2

m imbedded bar as excitation toneburst stepped between 3.0

and 8.0 MHz The form of the frequency response of the imbedded bar can be
obtained by dividing the response obtained in the test on the bar
(the solid line of Fig. 1D by the response in the test on the steel

10-cycle Gaussian windowed toneburst whose center frequerdgck (the dotted line of Fig. 10 This frequency response was

was varied in steps from 3.0 to 8.0 MHz. The signal received aonverted to an attenuation plot by using the relationship

the other end of the bar was Fourier transformed and Fig. 9 shows

the resulting spectrum of the measured response as the center AttenuatioridB) = — 20 |0§hoi (1)

frequency of the excitation was varied. A series of response peaks Aref

running parallel to the excitation frequency axis can be seen, iinereq is the amplitude of the normalized frequency response of
dicating that the bar acts like a mechanical filter that passes o imbedded bar and, is a reference amplitude. in this case
rel . ,

selected narrow frequency bands. Hence, the response at %Ywas taken as the maximum of the frequency response function
given excitation center frequency is proportional to the amplitudey’ e relative attenuation was 0 dB at this frequency. The solid
of the spectrum of the excitation in these “pass bands.” Figure 3o of Fig. 11 shows the results of this calculation, the result of
shows the maximum response obtained at any excitation fr@q_ (1) being converted to dB/m by dividing byer2 m length of
quency between 3 and 8 MHz as a function of frequericg., e imbedded bar. The curve flattens to a series of jagged peaks at
Fig. 10 is a view of the three dimensional plot of Fig. 9 lookingyigher values of attenuation; this is due to the transmitted signal
parallel to the excitation frequency a¥iShe dotted line shown in reqycing to the noise floor in these regions. The dotted line of Fig.
Fig. 10 was obtained by carrying out a similar experiment to thay shows the predicted attenuation of an 8.1-mm-diameter steel
of Fig. 9, but instead of transmitting the signal through the imbegy, - impedded in grout, the attenuation being normalized to its
ded bar, it was transmitted through a 50-mm-thick steel block. ftinimum value. It should be stressed that the experimental and
therefore describes the form of the response obtained when fgicted curves have been independently normalized to their re-
same transducers, amplifiers, and excitation are used on a sys tive minimum values and no fitting of the predictions to the
with negligible attenuation. The amplitude scales of the dotted agQeriments has been done. The agreement between the experi-
solid lines on Fig. 10 are very different since the minimum attenysenta| and predicted curves is very good, both showing a series of
ation along the imbedded bar was of the order of 75 dB highgpap attenuation minima that occur at regular frequency spacing.
than the attenuation through the block. In principle it would bgpe predicted and measured widths and frequency locations of the
have been possible to compare the absolute amp"tUdeS_Obta'Hﬁﬁima are very similar and the depth of the attenuation minima
in the two experiments, but the coupling of the 13-mm-diametggioy the same trend for both cases. In general, the higher fre-

transducers to the large steel block was more satisfactory than é‘éncy modes have lower attenuation than the lower frequency
to the 8.1-mm-diameter bar, and the absolute amplitude of the

response of the bar also changed in different experiments due to
coupling variations. It would have been possible to obtain the
curves of Fig. 10 in a single experiment with a relatively broad- Reverberations in protruding end
band input. However, carrying out multiple experiments with nar-
row band excitation at different center frequencies gave a much
better signal/noise ratio, this being particularly significant in the - “

CReﬂeCtion from 2mm Saw Cut

regions between the response peaks.
(Reﬂeclion from 4mm Saw Cut

Through Transmission (2 meters) —

>

000 010 020 030 040  0.50

Normalised Amplitude
o)
[

0 - Time (ms)
4 5 6 7
Frequency (MHz) Fig. 12 Time traces from tests on 8.1-mm steel bars imbedded
in grout: pulse-echo tests on one bar with a 2-mm saw cut 450
Fig. 10 Maximum response as function of frequency. ——im-  mm into the grout and on another bar with a 4-mm saw cut 450
bedded bar results of Fig. 9; ---- similar test on 50-mm-thick mm into the grout; through transmission test ove r 2 m length
steel block. Note: The scales on the two plots are indepen- of undamaged imbedded bar. Excitation was 50 cycle, 3.75 MHz
dently normalized. Hanning windowed toneburst.
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@ this signal obtained using the Morlet wave{pt8]) is shown as a
0.2 contour plot in Fig. 18). This illustrates how the frequency con-
%01 tent of the received signal changes with time. Each of the guided
= wave modes that can exist within the frequency bandwidth of the
2001 signal is excited and travels at a slightly different speed. The
E‘ interference of the various modes causes the complicated time
<01 signal shown in Fig. 1@); the different wave packets seen in Fig.
0 13(a) are not the separate modes. For comparison, the solid lines
’ in Fig 13b) represent the energy velocity dispersion curves for an
018 019 020 021 022 8.1-mm imbedded bar after they have been converted into a time
Time (ms) delay for a signal to travel the distance to the notch and back. The
6.5 modes excited in this frequency band &©,10), L(0,11), and
®) é L(0,12). The agreement between the predicted and measured ar-
6.0 rival time for each of the modes is very good. Figuré3lso
E ‘E shows that the response maxima coincide with the time delay
ES'S minima, which confirms that the energy velocity maxima occur at
859 ‘: the same frequencies as the attenuation minima.
g
H4s @ 6 Conclusions
40 @ It has been shown that the dispersion curves of a circular bar
0.18 0.20 0.22 imbedded in a lower impedance medium have a series of attenu-
Time (ms) ation minima at roughly equal frequency spacing. The attenuation
minima occur at the same frequencies as energy velocity maxima
Fig. 13 Reflection of 5-cycle 5.2 MHz center frequency Gauss- and they correspond to points at which the particle displacements
ian windowed toneburst from 4-mm-deep notch in 8.1-mm- and energy of the particular mode are concentrated towards the

diameter imbedded bar. (a) Time domain signal; (b) wavelet - . - -
transform of (a) showing amplitude as gray scale  (black high ) center of the bar so leakage of energy into the imbedding medium

in time-frequency plane. Lines show predicted group delays is minimized. The attenuation at the minima decreases with in-

obtained from energy velocity and overall propagation dis- creasing frequency as the energy becomes more concentrated at

tance. the middle of the bar, until the material attenuation in the bar
becomes a significant factor and the attenuation at the minima
rises again. For a steel bar in cement grout, the minimum attenu-

modes. This good agreement between the experimental Aipn is reached at a frequency-radius product of about 23 MHz-

predicted results increases confidence in the accuracy of {R@ The frequency-radius product at which the minimum attenu-
modeling. ation is reached and the value of the minimum attenuation both

The bottom trace of Fig. 12 shows the signal received in increase as the acoustic impedance of the imbedding medium in-
through transmission test on the undamaged bar when the excfgzases. Excellent agreement has been obtained between the pre-
tion was a 3.75-MHz 50-cycle Hanning windowed tone burst. T ctions and experimental measurements on a steel bar in cement
top two traces show the signal obtained in pulse-echo experimeBfgut: The results indicate that with further transducer and instru-
from the two ends of the damaged bar at the same frequency jﬂgntatlon development, it will be possible to inspect a significant

on the same amplitude scale. The echoes from the 2-mm F@gth of imbedded bar using excitation at the free end of the bar.
r

4-mm deep saw cuts approximately 450 mm from where the bardls has application to the inspection of the tendons in post-

enter the grout can clearly be seen. The multiple echoes at ff@Sioned bridges at locations close to the anchor points at the
beginning of the response correspond to reverberations in %ds of the b_n:jfge. The knqwletquge of these mode phenorpeng also
short length of bar that protrudes from the grout. Reflections froRi'€"S potential for maximising the propagation distance of guided
the saw cut close to the end of the bar remote from the transdufides in other imbedded bar systems. It has also been shown that
would appear at a propagation distance of 3.11n%5 m to the the non-leaky mode that exists in the case of a flat plate imbedded
defect and badk which is beyond the range plotted in Fig. 12.ir.1 cement grout does not exist in the cqrresponding case of a
There was no evidence of these reflections in the received sighiifular bar imbedded in grout although it may exist for other
since the attenuation produced by the extra propagation distafiéaterial combinations.
reduced their amplitude to well below the noise floor. The signals
from the two saw cuts shown in Fig. 12 appear to be of simildReferences
ampli_tude. T_he reflection _coefficient from notches in imbeddedq] alleyne, D. N., Lowe, M. J. S., and Cawley, P., 1998, “The Reflection of
bars is not simply proportional to the area removed by the notch = Guided Waves From Circumferential Notches in Pipes,” ASME J. Appl.
([47]) but a larger reflection would be expected from the deeper _ Mech.,65 pp. 635-641. .
notch. The similar measured amplitudes may be due to coupling® C\}'ey”e' D. N., Cawley, P., Lank, A. M., and Mudge, P. J., 1997, “The Lamb

N . . ave Inspection of Chemical Plant PipeworkReview of Progress in Quan-
vana#ogs ﬁt the t":’qo ends ?.f”thde b?[]or to d|f]j|_ek:.ences 'nhthe eXLent titative NDE Vol. 16, D. O. Thompson and D. E. Chimenti, eds., Plenum
to which the notches are filled with grout. This test shows that Press, New York, pp. 1269-1276.
pulse-echo testing can be used to detect defects in imbedded bafsl gohf, W., anddH'dEer, li-,d197|6i:;‘0n IESpgct!gndofUTthin W-a"i‘d Tubes |f|§|rz c

H HSR ransverse an ongitudinal aws by Guide rasonic aves,

The test range _could be |mpr_0ved by optimizing the frequency Trans. Sonics UltrasonSU-23 pp. 369374,
used to the minimum attenuation and using resonant, rather thap ggtger, w., Schneider, H., and Weingarten, W., 1987, “Prototype EMAT
broadband, transducers matched to this frequency with carefully = System for Tube Inspection With Guided Ultrasonic Waves,” Nucl. Eng. Des.,

tailored excitation and response filters. The number of cycles in__ 102 pp. 356-376. o ,
the input signal could also be increased. [5] Rose, J. L., Ditri, J. J., Pilarski, A., Rajana, K., and Carr, F. T., 1994, “A

. X . . Guided Wave Inspection Technique for Nuclear Steam Generator Tubing,”
Careful examination of the reflected and transmitted signals re- Npt & E Int., 27 gp. 307-330. ‘ ’

veals interesting behavior of these guided wave modes. Figurgs] Alers, G. A., and Burns, L. R., 1987, “EMAT Designs for Special Applica-

13(a) shows a detailed view of the signal reflected from the _ tions,” Mater. Eval. 45 pp. 1184-1189. o

4-mm-deep notch in a pulse echo test. The transducer was placéff Love: M- J. S. and Cawley, P, 1394, "The Applicabilly of Plate Waye
" echniques for the Inspection of Adhesive and Diffusion Bonded Joints,” J.

at the end closer to the notch and the excitatios @& cycle, 5.2 NDE, 13, pp. 185-200.

MHz Gaussian windowed tone burst. The wavelet transform of{8] Pochhammer, J., 1876, “Uber die fortpflanzungsgeschwindigkeiten kleiner

74 | Vol. 68, JANUARY 2001 Transactions of the ASME



schwingungen in einem unbergrenzten isotropen kreiscylinder,” J. Reine Anf29] Simmons, J., Drescher-Krasicka, E., and Wadley, H., 1992, “Leaky Axisym-
gew. Math.,81, pp. 324-336. metric Modes in Infinite Clad Rods. I,” J. Acoust. Soc. A2, No. 2, pp.

[9] Chree, C., 1989, “The Equations on an Isotropic Elastic Solid in Polar and ~ 1061-1090.
Cylindrical Coordinates, Their Solutions, and Applications,” Trans. Cam-[30] Viens, M., Tshukahara, Y., Jen, C., and Cheeke, J., 1994, “Leaky Torsional

bridge Philos. Soc14, pp. 250-369. ) ] o ) Modes in Infinite Clad Rods,” J. Acoust. Soc. An®5, No. 2, pp. 701-707.
[10] Hudson, G. E., 1943, "Dispersion of Elastic Waves in Solid Circular Cylin- [31] Berliner, M., and Solecki, R., 1996, “Wave Propagation in Fluid Loaded,
ders,” Phys. Rev.63, pp. 46-51. Transversely Isotropic Cylinders. Part Il. Numerical Results,” J. Acoust. Soc.
[11] Davies, R. M., 1948, “A Critical Study of the Hopkinson Pressure Bar,” Am., 99, No. 4, pp. 1848-1853.
Philos. Trans. R. Soc. London, Ser. 240, pp. 375-457. ) [32] Nayfeh, A. H., and Nagy, P., 1996, “General Study of Axisymmetric Waves
[12] Pao, Y.-H., and Mindlin, R., 1960, “Dispersion of Flexural Waves in an Elas-~ ~ in Layered Anisotropic Fibers and Their Composites,” J. Acoust. Soc. Am.,
tic, Circular Cylinder,” J. Appl. Mech.27, pp. 513-520. 99, No. 2, pp. 931-941.
[13] Pao, Y. H., 1962, “The Dispersion of Flexural Waves in an Elastic, Circular[33) woodward, R., and Williams, F., 1988, “Collapse of the Ynys-Y-Gwas
Cylinder—Part 2, J. Appl. Mech.29, pp. 61-64. ) ) Bridge, West-Glamorgan,” Proc. Inst. Civil Eng34, Aug., pp. 635-669.
[14] Onoe, M., McNiven, H., and Mindlin, R., 1962, “Dispersion of Axially Sym- [34] Parker, D., 1996, “Tropical Overload,” New Civil Eng., 12/26 Dec., pp.
metric Waves in Elastic Solids,” J. Appl. Mech29, pp. 729-734. 18-21
[15] Meeker, T. R., and Meitzler, A. H., 1972, "Guided Wave Propagation in 35 park ' D. 1996 “Pacific Bridge Coll Th Doubt Repai
Elongated Cylinders and PlatesPhysical Acoustics, Principles and Methods (35] Maerth%r(’j " New Civ’il Engu gct lr|7 g‘;p g_ipse rows Doubls on kepar
VOl'llﬁ’ V:t/67p Mason and R. N. Thurston, eds., Academic Press, New York[36] Niles, G. B., 1996, “In Situ Method of Inspecting Anchor Rods for Section
pp. e Loss Using the Cylindrically Guided Wave Technique,” IEEE Trans. Power

[16] Gazis, D., 1959, “Three Dimensional Investigation of the Propagation of
Waves in Hollow Circular Cylinders,” J. Acoust. Soc. An81, No. 5, pp.
568-578.

[17] Fitch, A., 1963, “Observation of Elastic-Pulse Propagation in Axially Sym-
metric and Nonaxially Symmetric Longitudinal Modes of Hollow Cylinders,”
J. Acoust. Soc. Am.35, No. 5, pp. 706—708.

Deliv., 11, No. 3, pp. 1601-1605.

[37] Weight, J. P., 1994, private communication concerning ultrasonic tests on
grouted tendons carried out in 1994, City University, London.

[38] Lowe, M. J. S., 1995, “Matrix Techniques for Modelling Ultrasonic Waves in
Multilayered Media,” IEEE Trans. Ultrason. Ferroelectr. Freq. ContAd,

18] Kumar, R., 1971, “Flexural Vibrations of Fluid-Filled Circular Cylindrical pp- 525_.542' ’

(18] Shells,” Acustica 24, pp. 137—146. 4 [39] Pavlakovic, B., Lowe, M. J. S., Alleyne, D. N., and Cawley, P., 1997, “Dis-

[19] Kumar, R., 1972, “Dispersion of Axially Symmetric Waves in Empty and perse: A general Plurpose Program for Creating Dispersion Curms;i{?w of .
Fluid-Filled Cylindrical Shells,” Acustica27, No. 6, pp. 317—329. Progress in Quantitative NDEV/ol. 16, D. O. Thompson and D. E. Chimenti,

[20] Morse, R., 1954, “Compressional Waves Along an Anisotropic Circular Cyl- eds., Plenum Press, New York, pp. 185-192. )
inder Having Hexagonal Symmetry,” J. Acoust. Soc. A6, No. 6, pp. [40] Pavlakovic, B. N., 1998, “Leaky Guided Ultrasonic Waves in NDT,” Ph.D.

1018-1021. thesis, Imperial College, University of London, London, available at http://
[21] Mirsky, 1., 1965, “Wave Propagation in Transversely Isotropic Circular Cyl- wallop.me.ic.ac.uk/ndt/theses/brian_thesis.pdf. )
inders Part I: Theory,” J. Acoust. Soc. An87, No. 6, pp. 1016—1021. [41] Kaye, G., and Laby, T., 1995,ables of Physical and Chemical Constarit6

[22] Xu, P.-C., and Datta, S., 1991, “Characterization of Fibre-Matrix Interface by _ Ed., Harlow: Longman’s, London. o .
Guided Waves: Axisymmetric Case,” J. Acoust. Soc. AB9, No. 6, pp.  [42] Silk, M., and Bainton, K., 1979, “The Propagation in Metal Tubing of Ultra-

2573-2583. sonic Wave Modes Equivalent to Lamb Waves,” Ultrasonits, pp. 11-19.

[23] Dayal, V., 1993, “Longitudinal Waves in Homogeneous Anisotropic Cylin- [43] Stoneley, R., 1924, “Elastic Waves at the Surface of Separation of Two Sol-
drical Bars Immersed in Fluid,” J. Acoust. Soc. An93, No. 3, pp. 1249— ids,” Conference of the Royal Sociefoyal Society, London, pp. 416-428.
1255. [44] Scholte, J., 1947, “The Range of Existence of Rayleigh and Stoneley Waves,”

[24] Nagy, P., 1995, “Longitudinal Guided Wave Propagation in a Transversely  Geophysicsb, pp. 120-126. )
Isotropic Rod Immersed in Fluid,” J. Acoust. Soc. Ar88, No. 1, pp. 454—  [45] Bernard, A., Deschamps, M., and Lowe, M. J. S., 1999, “Energy Velocity and

457. Group Velocity for Guided Waves Propagating Within an Absorbing or Non-
[25] Berliner, M., and Solecki, R., 1996, “Wave Propagation in Fluid-Loaded, absorbing Plate in Vacuum,Review of Progress in Quantitative NDEB, D.

Transversely Isotropic Cylinders. Part I. Analytical Formulation,” J. Acoust. O. Thompson and D. E. Chimenti, eds., Plenum Press, New York, in press.

Soc. Am.,99, No. 4, pp. 1841-1847. [46] Chan, C. W., and Cawley, P., 1998, “Lamb Waves in Highly Attenuative

[26] Amos, D. E., 1998, “A Remark on Algorithm 644: A Portable Package for Plastic Plates,” J. Acoust. Soc. Anl.04 pp. 874—881.
Bessel Functions of a Complex Argument and Non-Negative Order,” ACM[47] Pavlakovic, B., Lowe, M. J. S., and Cawley, P., 1999, “Prediction of Reflec-

Trans. Math. Softw.21, No. 4, pp. 388—393. tion Coefficients From Defects in Embedded Bar®eéview of Progress in
[27] Thurston, R., 1978, “Elastic Waves in Rods and Clad Rods,” J. Acoust. Soc. Quantitative NDE 18, D. O. Thompson and D. E. Chimenti, eds., Plenum
Am., 64, No. 1, pp. 1-37. Press, New York, in press.
[28] Safaai-Jazi, A., Jen, C.-K., and Farnell, G., 1966, “Cutoff Conditions in an[48] Onsay, T., and Haddow, A. G., 1994, “Wavelet Transform Analysis of Tran-
Acoustic Fiber With Infinitely Thick Cladding,” IEEE Trans. Ultrason. Ferro- sient Wave Propagation in a Dispersive Medium,” J. Acoust. Soc. A%.,
electr. Freq. ControlUFFC-33, No. 1, pp. 69-73. No. 3, pp. 1441-1449.

Journal of Applied Mechanics JANUARY 2001, Vol. 68 / 75



On Crack Initiation Mechanisms
s.vang | 1N Fretting Fatigue

Department of Aeronautics and Astronautics

Air Force Research Laboratory, By using the crack analogue model of rigid flat-ended contact, crack initiation in fretting
Wright-Patterson AFB, OH 45433 fatigue is analyzed. The coefficient of friction at the edge of contact, which characterizes
the asymptotic stress field, is considered as the primary controlling parameter in the
S. Mall process. Meanwhile, the maximum tangential stress criterion and the maximum shear
Fellow ASME, stress criterion are used to predict opening-mode and shear-mode crack initiations, re-
Materials and Manufacturing Directorate spectively. By examining the model prediction and comparing it with experimental obser-
Air Force Research Laboratory, vations, it is shown that the observed microcracks at the small angles to a fretting surface
Wright-Patterson AFB, OH 45433 were nucleated in shear mode in the early stage of tests with a smooth initial surface,

while the microcracks at the large angles were nucleated in opening mode in the later
stage with a rough worn surface. This understanding may help to establish the sequential
damage mechanisms in the complex process of fretting fatigue.

[DOI: 10.1115/1.1344901

1 Introduction analogue approach of fretting contact, and identified some impor-

Fatigue life and endurance limit of solids are significantly re}-am aspects of the equivalence between contact mechanics and

h . . ._fracture mechanics validating the approach under the condition of
duced by contact and cyclic fretting when added to plain fatigu i - - b -
conditions; fatigue in this situation is called fretting fatigue. It ha: small-scale yielding. This approach ably facilitates the analysis of

; . . ack initiation in fretting fatigue in the cases of high stress con-
been well known that the contact and cyclic fretting loads actival éentration. Giannakopoulos et &20] further considered the ef-

flaws. at the contact surface, which are dormant in plain fatjg ts of adhesion in contact fatigue using the crack analogue
conditions, to develop cracks. However, a thorough analy3|s§ proach

initiation of fretting fatigue is difficult because many factors ar The present work is intended to analyze crack initiation mecha-

involved in the proces§1]). Thus, a simple model including one, . ! . A .

or at most fewpkey fg{ct]o)rs becomes Fi)mportant and cregdible §ms In fretting fatigue by applying the crack analogue approach.

long as it ably takes into account some of the common observa-Sectlon 2, characte_‘rlfstlcs of the asymptotic stress field at th_e
dge of contact by a rigid flat-ended punch pressing on an elastic

tions in fretting fatigue, such as described in the following. In . ) -
typical fretting fatigue test, multiple cracks are often found nearUbs'trate are discussed first. For the case where the asymptotic

S tress field may be characterized by using the stress intensity fac-
the edge of contadf2,3]) or near the slip-stick boundary4,5]). > o L 2
These cracks are nucleated at angles less than 90 deg on the I,pég the crack analogue is invoked. The criteria for crack initia

ting boundary beneath the pad. However, the angles vary wide'% gnder mixed-mode_ loading within the frameV\_/ork qf linear
from 25 deg to 80 deg in various materi&B6—14. In addition, elastic fracture mechani¢e EFM) are then summarized, includ-

the coefficient of friction between the specimen and paga- 9 the maximum tangential stre¢8ITS) criterion for opening-

sured as the average over the entire contact suraaves flom £ 2eR RSk BETECR T2 B8 T BOeey SR e e o
an initially small value 0of~0.2-0.4 to a large value 6f0.7-1.2 :

. . examine initiation angles of a crack at the edge of contact. In
due to wear and asperity adhesi®8,7,11). There are also other . e L
characteristic features just beyond the initiation, such as t gction 3, the predictions by the model and their implications

kinked knee shape of a fretting fatigue crafk 10]). On the other related to experimental observations are discussed. The coefficient

hand, the modeling and analysis of fretting fatigue initiation hav f fr;lCttlgtri]c gretshs ﬁgﬁjgese?\tego;stiﬁé V\:Prf:r ngg?rgﬁﬁgzesar?;_
been based largely on a noncrack or nonfracture mechanics P ' P y gp

proach in which the stress and strain in critical planes along t er in this process. It is found that the driving force for shear-

. ode crack initiation is dominant over the driving force for
contact surface are used to formulate a crite(ag,15-1§). The opening-mode crack initiation with a small value of the coefficient

noncrack approach is simple in formulation and is easy to apply6 friction, and the dominance by shear mode crack initiation

the engineering practice. Also, it may work well for the frer“nghiminishes with an increasing value of the coefficient of friction.

fatigue with a noncqncent(ated contact stress fleld..Howeve.r,# correlating the model predictions to the experimental observa-
many cases of fretting fatigue, the stress and strain are hig ions of crack angles and evolving coefficient of friction, this
concentrated near the edge of contact, and consequently are Iés n 9 9 y

sitive to slight changes in the fretting conditions, causing difficu r-nlég)é isnh?r\llése?r?; ;T:gzn;?ltléirsgﬁgiﬁgoﬁegr?;géza;egn;gl|S hear
ties in applying the noncrack approach. In these cases, the InIt'a'efficient of friction), while the large-angle cracks were nucle-

tion of damage could be immediate due to the highly concentrat: ) - . :
state of stress and strain compared to a finite strength of materi Eed in opening mode in the later stage with rough worn surfaces

H . i,€., a large coefficient of friction At last, some conclusions are
owever, the nucleation of a crack may or may not occur depen Fawn in Section 4
ing upon the intensity of stregequivalently, energy release rate )

rather than by the strength-type driving forces at critical planes.

Recently, Giannakopoulos et dl19] have proposed the crack2 Crack Analogue Approach for Crack Initiation in
Fretting Fatigue

Contributed by the Applied Mechanics Division of The American Society of . . . . .
Mechanical Engineers for publication in the ASMBURNAL OF APPLIED ME- Frettlng fatlgue involves environmental, chemical, and me-

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept. 7chanical factors at the contact surfaces. A complete consideration
1999; final revision, May 9, 2000. Associate Editor: K. Ravi-Chandar. Discussion @f the process appears to be extremely difficult. The present work

the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departi ; ;
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, arr:'?@uses on the mechanical part of the process by applymg a

will be accepted until four months after final publication of the paper itself in th§imp|§ qugl Of fretting contact. Although the pad geometry and
ASME JOURNAL OF APPLIED MECHANICS. material similarity between the pad and substrate in reality may
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vary, the configuration with a rigid flat-ended punch pressing deading terms of the asymptotic stress field at tleét) edge of

an elastic substrate is considered in this study. The advantageotact in the substrate, which is modeled as a sharp crack tip, are
the simple model is that only one parameter, i.e., the coefficientwfitten as

friction between the substrate and pad, characterizes the

asymptotic stress field. In the following, the asymptotic stress 5 0\ 1 36
field at the edge of contact is first discussed. For the case where 4 coE( §) 2 COE{ 7)
the asymptotic stress field is singular on the order of 0.5, the crack O K 3 0\ 1 3¢
analogue approach is invoked. Then, the MTS and MSS criteria Tpo | = ! — cos(— + _Cog(_)
for crack extension are described, within the framework of LEFM. ooy 2mr | 4 2/ 4 2

2.1 Asymptotic Stress Field. Consider a homogeneous, iso- E sin f + E sin( ﬁ)
tropic, linearly elastic body in half plane, indented by a rigid 4 2] 4 2
rectangular flat-ended punch of widtl,2as shown in Fig. (). 5 6\ 3 36
The Cartesian coordinates,{), and the polar coordinates,@), —=sin |+ — sin( —)
both with the origin at the left edge of contact, are selected. When 4 2/ 4 2
these two interact, the rigid punch transmits in general a normal K 3 [6) 3 (36
force P, a tangential forceQ, and a momeniM (relative to the a4 snsl=z2sM =% | (1)
point (x=a,y=0)) into the substrate. In order to utilize the ana- 1 6\ 3 30
lytical solution available in the literature, it is further assumed that 2 cos( 5) + 7 cos{ ?)

the condition of gross slip exists between the substrate and the
pad, and the punch indents the substrate surface perpendiculw

without rotation. However, these conditions may be relaxed if tqﬁﬁtéhr: 0[;6[&?%%0?&?12{(;3&"2[:26 gﬁén Eonerr::poefctttiw\;eef;re;rse ttehnes or
local crack initiation only is of interest, as discussed later. ’ : 1 ’

Under the conditions assumed, the asymptotic stress ﬁ%I stic stress intensity factors in mode | and mode Il in the local

> . . ordinates. Note that the sign Kf, is opposite to the conven-
a_round t_he edges of conta_ct IS knovyn in the I|tera(@?_a])._The tional definition. The normal and shear components of traction
singularity of the asymptotic stress field is on the ordeRof" at o5, the edge of contatinside the contact zonare obtained as
the left edge of contact and is on the orderR$t ! at the right
edge of contact, wherR is the distance from the edges amd K
=tan %(2(1-v)/(1-2v)/fsp)/m, for Q>0. If Q<0, the two Peoc= and Qo= — —=, )
edges switch the stress fields. In the above expressi@npPois- vemr 2r
son’s ratio of the substrate, arfgy is the coefficient of friction ) . ) .
between the substrate and the pad. In particular, for the case eitesettingd=0 for oy, and o, in Eq. (1), respectively. As evi-
with v=0.5 or with fsp:Ov it turns out tham=0.5, showing the dent by the fretting scars in experiments, slip between thg cor_lta}ct
same order of stress singularity as for a sharp crack in the LEF{faces occurs at first at the edge of contact. In addition, it is
analysis([22]). Otherwise, the order of stress singularity in th@ssy_med that the crack initiation takes ple_lce at the left edge_ for a
substrate is less than 0.5 at the left edge of contact and is gre®@pitive Q ([23]) and a Coulomb-type friction law may describe
than 0.5 at the right edge of contact. Note that the order of strdB§ interaction of the fretting surfaces, i.@eoc/Peoc= fsp- Thus,
singularity other than 0.5 in LEFM is not physically meaningfufl€ relationship betweek, andK,, is established by the coeffi-
for a successful, stable crack extensif22]). Some of the restric- cient of friction near the edge of contaét,,, as
tions, such as the nonrotational indentation of the rigid punch to
the substrate surface, should be relaxed so that the stress singular- Ki/(=Kp=fsp. ®3)
ity at the edges of contact might show the meaningful order of O
leading to a nontrivial but finite energy release rate. Also, for

study involving only local crack initiation at the edge of contactt atK, in the present case is negative, which is uncommon in a

the _cond_ltlon of gross slip may be relaxed by assuming Fhatlj al crack problem in which the interpenetration of crack surfaces
partial slip occurs, it does not affect the order of singularity in th% L

hsgross slip between the substrate and pad occurs, the same rela-
nship as in Eq(3) can be derived foK, andK, ([19]). Note

ge of contact may be evaluated if a criterion reflecting fracture

larity for crack development in isotropic, linearly elastic solids i?ropertles of the substrate is given. The criterion is discussed next.

clear. 2.2 Crack Extension Criteria. The problem of crack growth
For the case witrm=0.5, the crack analogue to the contactinder mixed-mode loading has been under investigation for a few
configuration is readily obtained, as shown in Figh)X[19]). The decades. Several criteria for crack growth under combiteand
K, have been proposed mainly for brittle materials. The most
widely applied criteria are the maximum tangential str@d3S)
n criterion ([24]), the maximum energy release rdMERR) crite-
MAB’Q rion ([25,2€6), and the minimum strain energy density criterion
2 (S-criterion) ([27]). Within the LEFM framework, the first two
3 criteria are basically the same for prediction of pure opening crack
—t>Ky growth as well as in physical meaniri®28,29), while the third
one seems to lack a physical supp@25,30,31). Otsuka et al.

Rigid punch

A
=Y

¥ f’ [32] proposed the criterion of maximum shear str@d4SS) based
4—>| on the experimental observation of crack extension in the maxi-
"V 2a mum shear plane. Sh¢83] also observed the shear-mode cracks
during the crack coalescence in gypsum. Shen and Stephansson
[34] proposed a modified=-criterion for mixed mode crack
® growth. The MTS and MSS criteria will be used in the following
Fig. 1 (a) Fretting contact by a rigid flat-ended punch: (b) analyses of fretting crack initiat_ion_because o_f their (_:Iear physical
crack analogue of the fretting contact configuration in (a). The background. Also these two criteria, respectively, dictate the two
Cartesian coordinates (x,y) and the polar coordinates  (r,§) are  bounds of crack-extension mode mixity. They are summarized
shown for both configurations. below.
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Consider initiation of a crack into the substrate from the edge abne of distributed damage, since the stress concentration is not so
contact at angle, subjected to remotK, andK;,, as shown in severe as the effect of a crack tip. In order to apply the crack
Fig. 1. The localeffective driving forces for the crack initiation, analogue model, the last two length scdles., the stress concen-

k, andk,, , are expressed in terms éfas tration and the fracture process zpmaust be sufficiently small
relative to the width of the pad. If the size of the stress concen-
ki(0)=0ge( 0) V27T 4) tration zone is comparable to the size of the fracture process zone
Ky (0)=—0o,y(0)V2mr |’ associated with a single crack, the overall crack initiation tough-

ness is well defined, and the initiation of fretting fatigue crack
criteria have been proposed by correlating the local stress int gy be predicted by using the crack analogue model. In the case

sity factorsk, andk,, to relevant materials properties under apy’ '€ mnga}non of mutltu?Le ml_grot_cracl}s O(;:C“r_s' tr:e crakck a;na—
propriate physical considerations. The MTS criterion states thlggue modael represents the initiation of a dominant crack outrun-
the crack subjected t§, andK,, tends to extend in the direction ning all other cracks, for which the fracture driving force attains

of 6, in whichk; achieves the maximum value and succeeds to &Be maximum value. However, when multiple cracks initih

s0 if the maximum value o, is above the threshold. This angle no dominant crack the total initiation toughness for these cracks
| . .

6, for the maximum value ok, is obtained as[24,31) is ambiguous. Further, this problem is of the statistical nature and
v : ' more complex, and the present crack analogue model is not appli-

where o4y and o,, are given in Eq.(1). The MTS and MSS

( VKZ+8K2Z —K, cable to such cases.
g=2tan f ———|, (5) The purpose of the present work is to examine the angle of
4K, crack initiation for both modes using the crack analogue model
by solving the following equations: and to analyze the evolving damage mechanisms in fretting fa-
tigue by correlating the predictions to experimental observations.
kK, 3%k, Note that the coefficient of friction at the edge of contdgt,,
—=0 and a_02< 0. (6)  which uniquely characterizes the asymptotic stress field under the

condition of slip as described in Eg€l) and (3), serves as the
It should be noted thak,, =0 at =6,. However, thatk, =0 single controlling parameter in the crack initiation process. Due to
itself is insufficient condition to derive the expression of Exj.as the fact that fretting fatigue cracks normally initiate on the “ten-
considered in the analysis of the crack analogue model by Giaile” side of contact([23]), only the case of)>0 is considered
nakopoulos et al.19]. below.

Similarly, the MSS criterion states that a crack subjectelto
and K;, tends to extend in the direction df, in which |k]|
achieves the maximum value and succeeds to do so if the m
mum value oflk,,| is above the threshold. This angl, , for the
maximum value ofk;,| satisfies the following equation:

3.1 Model Predictions. Angular variations of effective stress
ajgit_ensity factors,k, and k;,, at the edge of contact for a few
representative values ¢f, were calculated by using Eq4) and
(4), and these are plotted in Fig. 2. Angles for the maximum
values ofk, and|ky|, i.e., 6, and 6, , were evaluated at different

2K, tar?

Ky, values off , by using Egs(5) and(8), and these results fdk, in
—(6,))=0. (7) the range from 0 to 3 are plotted in Fig. 3. Effectikeat 6= 6,
a0 and|k, | at #=6,,, and their ratio were subsequently calculated.
By substituting the stress componeny, given in Eq.(1) for k,,,  The ratio is plotted as a function 6f, in Fig. 4. Recall thak, at
it is rewritten as 0= 6, represents the driving force for opening-mode crack initia-
tion predicted by the MTS criterion, and thig,| at 6= 6,, rep-
0 0 0 resents the driving force for shear-mode crack initiation predicted
> +2K; tarf > —7K ta > —K,=0. by the MSS criterion.
®) Figure 2 shows the typical angular variationsipydemonstrat-
ing the existence of a peak value kf at a certain angle for a
Unlike applying the inequality of Eq6) for 6, in the MTS case, given fsp. Furthermore, Fig. 3 demonstrates that the angle for
a careful selection from the real roots of E§) for 6, is required peakk, i.e., §,, varies monotonically from 180 deg to 70.5 deg
in this case. as f, varies from 0 to infinity. Meanwhile, the angle for peak
The crack analogue model using the rigid flat-ended contagibsolute shear stresd),, , varies monotonically from 70.5 deg to
configuration provides the asymptotic elastic stress field at tedeg. The ratio of effective driving forces for opening-mode and
edge of contact and the driving forces for crack initiation in fretshear-mode crack initiationk, (9,) to k,(8,,), is equal to zero at
ting fatigue in terms of stress intensity factors. This simple mode;pzo, and increases with increasirg,. It reaches the maxi-
has distinct advantage that it has only one controlling parametgfum value of 1.155 ats,=0, as shown in Fig. 4. Since it indi-
i.e., the coefficient of friction at the edge of contact. By examiningates the competition between the driving forces for crack initia-
the model predictions by the crack analogue model in conjunctigian in these two modes, this figure demonstrates that the driving
with the MTS and MSS criteria within the framework of LEFMforce is in favor of the shear-mode crack initiation at small values
and by comparing them to experimental observations, the cragkf,, and alters to favor the opening-mode crack initiation at
initiation mechanisms in fretting fatigue are explored, as disarge values of ;,. The critical value off 5, (which evolves dur-

cussed next. ing fretting fatigue for switching the modes should depend on
. ) materials. Note that ed= 6, , k; is always negative, indicating a
3 Analyses and Discussion closed crack if initiated in shear mode.

In fretting fatigue, stress in the substrate is often highly concen-
trated at the edge of contact. The crack analogue model, as de3.2 Predictions Versus Observations in Fretting Fatigue
scribed above, may be appropriate to handle the situation ahests. As mentioned before, the crack initiation angle observed
characterize the driving forces for fretting fatigue crack initiationn fretting fatigue tests ranges widely from 25 deg to 80 deg
However, there are a few length scales in the analysis of frettifi®,6—14). While these tests can be divided into stages as char-
fatigue crack initiation which should be kept in mind. These aracterized byfs, between the contact surfaces, at which stage the
width of the pad, size of the partial slip region, size of the stressacks were initiated is uncertain. In these tests, the initial value of
concentration zone, and size of the fracture process zone aheadl;gf(if reported was normally~0.2—-0.4, with a smooth initial
a single crack tip. The stress concentration zone may be consdrface. It evolved with cycling, and stabilized at a value of
ered as equivalent to the zone of plastic deformation or as th€.7-1.2. The steady-state values, when used as theflggat
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Fig. 2 \Variation of effective stress intensity factors k;and k; with angle @, for different values of f,,. The values of k,and k/, are
normalized by —K;.

the edge of contact, are conservative because they were measuréd the later stabilized stage of fretting fatigue, for example with
as the average over the entire contact surface normally undefsg=1.5, the MTS criterion predicts the crack initiation angle in
partial slip condition. The cyclic slippery process had led topening mode to be 83.5 deg, which is in agreement with the
rougher surface of contact and a lardgy, especially near the upper bound of the angles observed experimentally. Meanwhile,
edge([21]). the MSS criterion predicts the angle in shear mode to be 10.5 deg,
If the coefficient of friction is given, the crack initiation modeswhich is too small compared to the experimental values. How-
in the early and in the stabilized stages in these tests can be clever, the small-angle shear-damage mechanism might be respon-
acterized by using the crack analogue model. For examflg,if sible for wear detachments forming slivers instead of fretting fa-
=0.2, the MSS criterion predicts the crack initiation angle itigue crack initiation. In addition, the driving force appears to
shear mode to be 33.4 deg in the early stage of fretting fatigifayor opening-mode crack initiation in this case with a large value
which is in agreement with the lower bound of the angles olf f;,. The ratio of the driving forces for opening-mode and
served experimentally. Meanwhile, the MTS criterion predicts trghear-mode crack initiations is equal to 0.8 gt=1.5, as shown
crack initiation angle in opening mode to be 139.2 deg, which ia Fig. 4. Based on these observations, it is suggested that the
much above the range of the observed angles, as shown in Figciick initiation process was shear-mode dominant in the early
In addition, the driving force appears to favor shear-mode craskage with a smooth contact surface and was opening-mode domi-
initiation rather than opening-mode crack initiation in this caseant in the later steady-state stage with a rough worn contact
with a small value offs,. The ratio of the driving forces for surface in the fretting fatigue tests discussed above.
opening-mode and shear-mode crack initiations is equal to 0.06 ait should be mentioned that the foregoing analyses are based on
fsp=0.2, as shown in Fig. 4. the crack analogue model without an actual crack in the substrate.
It is equivalent to the first-order perturbation analysis of a kinked
crack with traction-free surfaceg§35]). However, it may not al-

180
] 4, direction of maximum k; (predicted by MTS) 1
1354 \*~— ' . .
§ &y, direction of maximum |k (predicted by MSS) s
& ] kS
g 0y T £
s ] 2
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1 o~ . r -b? 4
---------------------------- i o
] © ]
0 ———— - T . -% 1
0 1 P ) 3 & ]
? 0 +Frr—r—r—r—r—r— T T
Fig. 3 Variation of @, for maximum k; and of @, for maximum 0 1 2 3
|kyl with fg, , under the condition of slip at the edge of contact, Jp
predicted by the MTS criterion and by the MSS criterion, re-
spectively. Note that 8, and @, respectively, reach their mini- Fig. 4 Ratio of k; at ,to |k,| at @, as a function of f,,, under
mum values of 70.5 deg and of 0 deg at  f;,=c. The upper and the condition of slip at the edge of contact. The ratio indicates
lower bounds of the crack angles observed in tests are also the competition between the driving forces for opening-mode
shown for comparison with the predictions. and shear-mode initiation of a crack.
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An Intersonic Slip Pulse at a
Frictional Interface Between
Dissimilar Materials

G. G. Adams Two homogeneous and isotropic elastic half-spaces are acted upon by remote normal and
Professor, Fellow ASME, shear tractions. The applied shear stress is less than that which is required to produce
Department of Mechanical Engineering, overall sliding of the two bodies. The possible existence of a slip pulse is investigated, i.e.,
Northeastern University, a finite-width region, on the interface, of altered normal and shear stress which satisfies
Boston, MA 02115 the Amontons-Coulomb law of friction. Pulses which travel at a speed which is greater
e-mail: adams@neu.edu than the minimum shear wave speed and less than the maximum dilatational wave of the

two bodies, are of interest in this investigation. Such pulses are shown to exist for suffi-
cient friction and for modest mismatches in material combinations. The pulse is weakly
singular at the leading edge and bounded at the trailing edge. Furthermore it travels at
speeds just below the lesser dilatational wave speed and in the opposite direction of
sliding of the lower wave-speed material. In addition, a pair of equations are given which
relate the interfacial normal and shear stress to the interfacial slip velocity. These rela-
tions are analogous to the subsonic results of Weertman, but are valid for an arbitrary
speed range.[DOI: 10.1115/1.1349119

1 Introduction there is no instantaneous dependence of shear stress on normal

The interaction of elastic waves with friction has been the su gre;z,ryblég Eﬁ:eh%rri;?ehiss ngr Osftrﬁzfmi?p;?gsss O_T_hi 3'2?'; {ﬁid;ng
ject of many recent investigations. These problems have relevance.. o o
in the areas of tribology and seismology and thus span a rangetiérfgnslliz\i’;éemoves the short wavelength ill-posedness of fric

scalc_a from nanometers to hunc_ireds of kilometers. The notion that certain observed friction behavior is not a prop-

Itis well known that a Rayleigh wave can propagate along thert of the interface, but rather a consequence of system dynam-
free surface of a semi-infinite elastic body and has an amplitulgesy was su ested,b Martins. Oden C;ndf‘}ia{dl]y AdamZ
which decays exponentially with distance from the free surfag’g ; 99 y ' ! ’

Similar waves can travel along the interface of two contacti 2] investigated the sliding of two dissimilar elastic bodies due to

: : ; : eriodic regions of slip and stick propagating along the interface.
elastic bodies. Such waves were investigated by Storidlefor It was found that such motion allows for the interface sliding

gggﬁiiliﬂpiﬁgtrig?eﬁﬁ ;?gp‘)’gtfﬁez%ﬁ?}gi%gvggg;sségnﬁ;%ivf\flgélg ditions to differ from the observed sliding conditions. In par-
greatly. Achenbach and Epstei] investigated interface Wavestlcular theinterfacecoefficient of friction(defined as the ratio of

in unbonded frictionless contact in which separation does not gphear stress to contact pressure at the interizwe be constant or

cur. These “smooth contact Stoneley waveslso known as slip an increasing/decreasing function of slip velocity. However, the

waves or generalized Rayleigh wayese qualitatively similar to apparentcoefficient of friction(defined as the ratio of thepplied

those for bonded contact and occur for a somewhat wider rangeSh]ear stress to thapplied normal stresswill be less than the

material combinations. Comninou and Dund{@$ investigated imerface friction coefficient. Furthermore the apparent coefficient

: . I : : e of friction can decrease with sliding speed even though the inter-
is'r:'tg&i\;es.rvr\:ghpg:gi%ﬁ:tcyrgﬂevgsig;ﬁﬁg;rﬁgﬁ?szfcngsiﬁ:fég’%ﬁﬁ\gce friction coefficient is constant. Thus the measured coefficient
friction due to the presence of separation waves and/or stick- ] }{)gfri'r?;[g?agges not necessarily represent the behavior of the slid-

waves was studied by Comninou and Dundufk Both of these In the limit as the slip region becomes very small compared to

analyses showed that such waves could exist only with squafes < . -
. " ; ; : e stick region, the results of Adami$2] become that of a sli
root singularities at the tips of the slip zones. Fre{idHpointed glse travelgi;ng through a region which g)therwise sticks. mp

out that the singularities encountered by Comninou and Dundufs : . ) . . X
would require energy sources and sinks erived that result by using the moving dislocation formulation of
p c}Neertman[14]. The existence of such an isolated slip pulse was

The frictional sliding of an elastic half-space against a rigi .
surface(Martins, Guimaras, and Faria[6]) and of two elastic pqstulated by V\_/eertma[11_5]. Andrewg and Ben-Zlorﬁ16]_ob-
rt.alned a numerical solution for a slip pulse, the amplitude of

half-spacesAdams, (7)) have also been investigated. Friction “Which increases and the width of which decreases as the pulse

cause surface wavésimilar to slip wavesto grow with time; the ; . . h |
¢ P 510 |gontinues to propagate. This self-sharpening effect is consistent

rate of growth is inversely proportional to the wavelength. . . o
9 Y _prop 9 h the analytical solution of Adamf7] for sliding. Recently

simulations, this phenomenon can lead to numerical proble gh t . : . - :
which are related to mesh size. Recent work by Ranijith and Ri roli [17] investigated the interface between a viscoelastic ma-

[8] used the Prakash-Cliftof®,10] friction model. In that model €7@l and a rigid surface. It was shown that a periodic set of
slip-pulses is impossible for this viscoelastic-rigid interface which

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF satisfies Cou!omb.s law O.f fr.ICtlon' Howe\_/er, EXperlm?ntal evl
MECHANICAL ENGINEERS for publication in the ASME GURNAL oF AppLiEp  d€Nce, described if{17]), indicates the existence of slip-pulses
MECHANICS. Manuscript received by the ASME Applied Mechanics Division,and so([17]) discusses possible improvements which could be
March 28, 2000; final revision, August 15, 2000. Associate Editor: R. C. Bensomade to the friction model.

Discussion on the paper should be addressed to the Editor, Professor Lewis T, : :
Wheeler, Department of Mechanical Engineering, University of Houston, Houston Adams[18] and Nosonovsky and Adanﬁ$9] InveStlgated the

TX 77204-4792, and will be accepted until four months after final publication of theliding (_)f elas'tic half'Space_s- They S_hOWGd that steady sliding is
paper itself in the ASME QURNAL OF APPLIED MECHANICS. compatible with the formation of pairs of body wavés plane
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dilatational wave and a plane shear waxadiated from the slid- along the interface with some intersonic wave speékhus under
ing interface. Each wave moves at a different angle with respecttfiese conditions the quantiy* may be interpreted as trappar-
the interface such that the trace velocities along the interface &t coefficient of friction, since sliding occurs with that ratio of
equal and supersonic with respect to both elastic media. This §Plied shear to normal tractions. Sufficiently far from the inter-
personicity does not violate causality as it is only the trace veloface the bodies move with relative velocity in the x,-direction.

; PRI P ; : taking an appropriate limit it will be shown that a solution for
ity which is supersonic; the waves move at the dilatational a Xeingle slip-pulse can be found for whioh—0.

shear wave speeds in their respective bodies. It was also show id wurbation displ o Al in th
that a rectangular wave train, or a rectangular pulse, can allow for'/€ consider perturbation displacemenis (15,0, ,0;) in the

motion of the two bodies with a ratio of remote shear to norm4¢'™M of real nondispersive traveling waves with wave nunioes
stress which is less than the ratio of shear to normal stress $¢en by, €.g., Comninou and Dundygj
quired to produce sliding at the interface. Thus the apparent coef- o
ficient of friction is less than the interface coefficient of friction. o
Furthermore the apparent friction coefficient decreases with in- ul—Re{ m2:1 [D1m expmkz;xz)
creasing speed even if the interface friction coefficient is speed-
independent. This result, as well 442]), supports the interpre- ]
tation of certain friction behavior as a consequence of the +Dom exrimkgzxz)]exmmk(xl—ct)]]
dynamics of the system, rather than as strictly an interface prop-
erty ([11]). ©
A slip-pulse, at the interface between two elastic half-spaces, o s
traveling at anintersonic speed(between the lower shear wave U2=R mEzl [=141D1m expmkl1x)
speed and the higher dilatational wave speeds found by Co-
chard and Ric¢20] using a numerical technique and the Prakash- A )
Clifton friction law. For the particular material combination stud- —1{5 "Damexpimkgzxz) Jexd imk(x, —ct)]
ied, the pulse traveled at a speed just below the slower dilatational
wave-speed and in the opposite direction of sliding of the slower ©
wave-speed material. In the present investigation, an analytical 0 = _
solution is obtained for an intersonic slip pulse with Coulomb =R mZzl [Dam exp(—mifsx,)
friction. The problem is first formulated in terms of a periodic set
of slip-pulses. Then, through an appropriate limiting process, a .
singular integral equation is obtained for a single pulse. This pro- +Dymexp(— mk§4x2)]exp[|mk(x1—ct)]]
cedure allows the interface normal and shear stresses to be related
to the slip velocity(a generalization of the subsonic Weertman 3
solution. An intersonic slip pulse is shown to exist for moderate 0.=R 2 [ £3D 3m €XH — MKL3X5)
values of friction and for modest differences in the material prop- 2 =y e, a2
erties. The behavior of these pulses is then studied in detail.

2 Problem Description +i{;1D4mexp(—mkg4x2)]exqimk(xl—ct)]]. )

Consider two perfectly flat homogeneous and isotropic elastic . . )
half-spaces pressed against each other and sheared with renh8fg Perturbation is taken with respect to the homogeneous refer-

tractionsp* andq*, respectively(Fig 1). The ratio ence state of stress given by,=—p* and rj,=q*. It is noted
that this reference state does not satisfy the frictional sliding con-
wr=q*/p* (1) dition at the interface. For a given wave spaedor which ¢, is
is less than that required to cause the two bodies to slide wﬁ‘ﬁal
respect to each other, i.e.* <u whereu is the interface coef- A2 — A (aie2
ficient of friction. It is emphasized that theterfacecoefficient of fr=N1=(cle)’,  L=vlm(eler), ©)
friction u is the ratio of shear to normal contact pressure at the 7 7
& P La=+1—(clcy)?,  L4=\1—(clc))?

interfacewhich would cause local slipping to occur. Clearly, un-

der these loading conditions, it is possible for the two bodies {ghich requires that the magnitudes of the wave components decay
remain in static equilibrium. However, we investigate here thgs|x,| —c. Similarly for £, imaginary

possibility of relative motion of the two bodies wifl* <u, due
to the existence of periodic stick and slip regions which propagate= —sgr(c)iy(c/c,)2—1, ¢,=—sgnc)ivy(c/cy)?—1,

{z3=—sgr(c)iv(c/c))?—1, ¢4=—sgr(c)iy(c/cy)?—1

* *
q* \l,p \1, \ %2 \l, \l,p q* which constitute the radiation condition, i.e., waves cannot be
generated ajx,| =. For intersonic speeds,will be in a range
for which someZ, are real and others are imaginary. Furthermore
G, v, p Vo in (2—(4)

—n/k -a a wk X1 A+ 2G G . N +2G’ , G’
4 $ $ t > Cj_: ) C2: ™ C]_: ’ 1 02: ]
p p P P

Stick  Slip Zone Stick

“

G,v,p (5)
C1 12(1-v) , (4 2(1—v") (4
a* Tp* 'T T q*Tp* p= c, YV 1-2v° B o, Vi-2v “Tg
Fig. 1 A periodic system of slip-pulses at the frictional inter- wherecy,c, are the dilatational and shear wave speeds, respec-
face between two elastic bodies tively, G is the shear modulug, is the Lamés constant,v is the

82 / Vol. 68, JANUARY 2001 Transactions of the ASME



Poisson’s ratio, angd is the mass density. Quantities with a primevhere
(") refer to the upper half-spad€ig. 1). In addition to the wave

numberk, which defines the periodicity of the solution, there is aby, a0, . al, by
the indexm. Thus the desired solutions are periodic in space withT12=G| 7=+ ——=|+ 0", m,=(A+2G) = +\ ———p~.
wavelength 2r/k and consists of an infinite number of compo- 2 ! 2 ! @)

nents, each with wave numberk

The continuity conditions pertain to the complete solution, i.egatisfaction of the continuity conditions yields
the sum of the uniform and perturbation solutions. Written in

terms of a moving coordinatg, the shear and normal stresses and Dim=€:Dum: Dom=€Dsm, Dsm=€3Dsm,
the normal displacements are continuous
1A 1.0=1147.0,  72A7.0=73A7,0), Ua(7,0=U35(7.0) m=123... ®)

n=x,—ct, —walksgy<wu/k (6) wheree,e;,,e; are independent ah and are given by

|
e1=(G'IG)[~((B)(L+ )~ 1+ )+ 2(— 1= L5~ Lols+ Lalat LLalat (05L0)
+(G'1G) (2= 44304+ 205+ (B (= 1+ L) (1+ O IHL (2= 441+ 25+ BA(— 1+ 1) (1+85) L
+(G'1G)(2(=2+ ) (3= 2B L3 s+ La(—2+(B')?+ 205~ (B2 L5+ 40205~ (B2 5+ (B)?E505) 1L} ©)
&= —{(GIG) o[ {1(—4+2(B")*=2(B')2L5+4Lsla) — (= 2+ B2) Lo — 1+ {5) + BPLiLa(— 1+ &)
+(G'1G){1(2— 44584+ 205+ (B (— 1+ ) (L+ L W[ (2= 4410+ 205+ BA(— 1+ ) (1+ 5) s
+(G'IG)(2(—2+ ) {3 2B L3ls+ {a(— 2+ (B)?+205— (B') L5+ 4005~ (B))?L5+(B)?1545)144} (10)
e={—2+40,0,— 205 BA—1+ DA+ ) +(CIG) [ BA—1+ L)1+ L) —2(— 1+ {1l Lala+ Ll5la— G+ LD
{[(2=4010+285+BP(— 1+ (14 85) L3+ (G 1G)(2( =2+ B2 (3= 2% Li La+ {a(—2+(B')?

+205—(B)205+4L0a— (B)2E+(B)2535)1La}

The computations leading ®@)—(11) are quite complicated and 1
were performed using the Mathematica symbolic manipulatiorE COSNX= — §+ﬂ- 2 8(x—2mn),

software(Wolfram [21]). Note that ifc is subsonic ther, ,e,,e;
are real. However, ifc is intersonic or supersonic |
>Min(c,,c5)) thene,,e,,e; are complex.

Now the mixed conditions which pertain to the periodic regions

of stick and slip, i.e.,

vs=05(7,00—01(7,0+vo=0, a<|y|<m/k, Stick Region
(12)

75=T1A 7,00+ w7y 7,00=0, |y|<a, Slip Region
(13)

are applied. The quantitys, defined in(12), is called theslip
velocity By substituting(2) into (12)

%

vs=vgt+CkR eOiE mD,, expimkn) ¢,
m=1

e=e;te,—e;—1 (14)

is obtained. By using the integral transformation given by

1 a
D4m:m J’_a(i)(f)EXF(*imkf)dg, m=123...®
(15)

the slip velocity becomes

+ I(R
Us=Uo -

Using the identitieg[22])

> exdimk(n—&)]4(£)def. (16)

—a m=1

Journal of Applied Mechanics

(11)
[
” = - . 1 X
2, 2 ngl sinnx= ECOtE
a7
(16) results in
k a
vs:vo—ﬁfﬁa¢(§)d§+¢(7})H(a—|v|)
ik & k(n—§
+Re{ﬂf_acot 5 p(E)AE . (18)

It can now be seen thdl8) will satisfy the stick condition(12)
provided thatg(€) is real and that the resultant condition

k a
szﬁ(ﬁ(f)dFvo (19)
is satisfied. Thus the slip velocity becomes
vs=¢(mH(@—[7]) (20)

and the slip velocity automatically vanishes in the stick regions.
Furthermoreg(7) is seen to be equal g in the slip region.

It remains to satisfy the slip stress conditidB). By substitut-
ing (2) into (13

©

7s=GkRe| >, (8,—iud,)mDyn exr(imkn)] +q* — up*
m=1
(21)
where

S1=2e1L1+ex(1+ (Y, 8,=2e+ B2Te +2e,— BPe

(22)
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is obtained, in whichs; and §, are real for subsonic, but are T92/G=—p*IG—Re 8,/€,C) by
otherwise complex. Use of the identitiés7) and the resultant

o ! . . A a
condition (19) yields the singular integral equation +IM(8,/e46) @Iog . —a<p<a, (29)
s aty
— a —
Re( M)ij cotk(n—g B(E)dé which has logarithmic singularities of opposite signs at the two
€oC 2m | 4 2 ends. Thus the requirement that the contact stresses be compres-

sive is violated, no matter how large the remotely applied normal

61— i1pd, pressure.
+Im( €oC ¢(n) Solutions of the form
P |m( al—msz) e ¢(n)=®(n)(a—n)“(a+n)? (29)
KRG o eqC ' e will now be considered. For the solution to be bounded at both

(23) ends @>0,8>0) the consistency condition is required, i.e.,

a
Thus (23) subject to(19) represents a singular integral equation j (u—p*)(p*IG)(a—n) “a+75) Pdyp=0. (30)

—a

for determining the slip velocity for prescribed material properties

and givenp*, u*, and . The resultant condition allows for the |t can readily be seen that this condition is violated, except for the
correspondlng shdmg velocity, to be determined. The width of 556 of global sliding withu=x*, and thus solutions of24)
the pulse 2 is arbitrary. ~ which are bounded at both ends do not exist.

For an isolated slip-pulse, as opposed to the periodic slip andyow consider a solution singular at one end, and bounded at the
stick zones considered thus fd~0=v,—0 (from (19)), and  gther @B<0,—1/2<a<1,-1/2<B<1). A solution may be
(23) simplifies to obtained by following the procedure of Muskhelishvi[23].

Equivalently the results which are tabulated by Byd§24] may

S1—iud,\ 1 (2 d S1—iud i i
Re( 1mip 2)_ (&) §+Im 1l 2)¢(77) be used which gives
€C |Jm)_ o n—¢ €oC at+7p|”
o y=B=—a, ¢(n)=do a7 (31)
=(u—p*)—, —a<p<a. 24
(=r’)g 7 @4) tanmy=—Rel(8;,— i pd,) el Im{(8,— i d,)leq)  (32)
Furthermore the shear and normal stresses become $o=—(n—u*)(p*/G)(sinmy)/Re{(61—iumd,) ect. 3)
33
1 a d . . . . . .
115/ G=0* /G +IM( 8, /64C) b(7) + Re( 3, /64C) = ¢7;é:)§§ E;nally the magnitude of the slip distantky;, may be determined
—a
(25)

l a
USIip:_Ef D(E)dE=(pu—u*)(p*/G)2mayl
Tl G=—p*IG—Re(d,/€,C) p(7) —a

1 (2 $(&)de Re((8,—i )€} (34)

+1m(5;/€c) - A M€ (26) The speed of the slip-pulse is arbitrary, except that any candi-
date solution must satisfy the following inequality constraints:
It is interesting to observe that these res(#§)—(26) generalize A vg=0, |p|<a=Im{(5,—iud,)/ect=0

the analogous subsonic results of Weertrfi] to the intersonic

and supersonic speed regimes. For subsonic spdeds,e, are B 7<0, |y|<a=Re[5,/exct—Im{s,/e,cl/tanmy=0,
all real and hence the second term(&b) and the third term in %

(26) vanish. Furthermore the subsonic slip-pulse obtained by Ad- and - u*=—Re{0/eocH/Im{ 15, /eqC}
ams[12] occurs at the speed for whiefy =0 which corresponds  C: 7,,<0, | 7|>a=—Im{s,/e,c}/sinmy=0

to the slip wave speed or, as it is sometimes called, the general-

ized Rayleigh wave speed. In such a pulse the interface shear and u*=—Re[d;/eoct/ Im{ud,/eqch
stress is equal to the remotely applied shear stf2Ssand the (35)
normal stress is linearly related to the slip velodi#6). Thus a

constant slip velocity in the slip region gives rise to a constam: r,,+ u7,,<0, |7|>a= —Re{(8;—iud,)/eyc/sinTy=0
change in the contact pressure such {8} is satisfied in the slip

region. For supersonic speeds,/e.c is pure imaginary and E: — 71+ u72,<0, |7|>a=Re{(5,+iud,)/e.cl/sinmy=0
8, 1eqc is pure real so that the third terms(i25) and(26) vanish .

and E[)hus the shear and normal stresses are linearly related to the and  u*=>—Re[5,/ec}/
slip velocity. This behavior allows for the slip pulse of Im{ .8, /egct

Nosonovsky and Adamgl9] to occur at any supersonic speed.

However, in the intersonic speed regime, ali three terms in each!bfan be seen that the second equations in eaéh 6f andE are
(25) and (26) are present. redundant. Furthermore, by usit@p), it can be shown thak and

It may appear that an algebraic solution(@#) is possible at D are also equivalent. Thus there are a total of five independent
any speed for which the quantity &6,—iud,)/e,ct vanishes. inequality constraints. The effect of the inequality constraints is to
While such speeds exist and a solution given by severely limit the range of speeds of the slip-pulse.

3 Results and Discussion

d(n)= o (27) , _ _
Results for a slip-pulse have been obtained and are shown in
does satisfy the singular integral E@4), the corresponding in- Figs. 2—8. In Figs. 2—4 are results corresponding to the material
terfacial normal stresses are given by properties used irf8] and [16], i.e., k=5/6, p'/p=5/6, and
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a slip-pulse exists (u*) versus the square of the shear wave
speed ratio («?) for various values of p'/p, with u=1 and »

Fig. 3 The minimum value of u* versus the negative of the
normalized wave speed (—c/c,) for k=p'/p=5/6, v=v'=1/4
and for various values of the friction coefficient

=v'=1/4
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Fig. 4 The normalized slip distance  (Usgjp/a)/(u—p*)(p*/G) ; . - vk
versus the negative of the normalized wave speed (—clc,) for Fig. 7 t;he normallfzi? S“E distance (l{js“p /t.a)/(” ’ZL 2('0 /G.)
k=p'[p=5/6, v=v'=1/4 and for various values of the friction versus the squar/e o' the shear wave spefe ratio (%) for vari-
coefficient ous values of p'/p, with u=1 and v=v»'=1/4

v=v'=1/4. Figure 2 gives the order of the singularityy) at the speed range. The direction of wave propagation is opposite to that
leading edge versus the negative of the normalized wave sp&écsliding of the lower wave-speed material and its maximum
(—clc,) for four different values of the friction coefficient. Note magnitude is slightly less thar] . Also note that the order of the
that the effect of the inequalities is to severely restrict the range sifigularity, which always occurs at the leading edge of the slip

possible wave speeds to an extremely narrow band which is jasine, is especially small.
below the dilatational wave speed of the lower wave-speed mateAnother effect of the inequality constraints is to restrict the
rial. The smaller the friction coefficient, the narrower is the waveninimum value of the ratio of remotely applied shear to normal
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tigated. The interface normal and shear stresses have been related

100 to the slip velocity, which yields a generalization of the subsonic
Weertman solution. An intersonic slip pulse is shown to exist for
8 1 sufficient friction and for modest mismatches in the material com-
52 binations. These slip-pulses travel at a speed just below the slower
2 6ot "\ u=0.4 | dilatational wave speed; travel in the opposite direction of sliding
= ' of the lower wave-speed material; and are weakly singular at the
é 20 leading edge and bounded at the trailing edge.
(]
3 i a——
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Environmental Engineering, The Timoshenko beam theory includes the effects of shear deformation and rotary inertia
University of California, on the vibrations of slender beams. The theory contains a shear coefficient which has
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Life Mem. ASME coefficient is derived. For a circular cross section, the resulting shear coefficient that is

derived is in full agreement with the value most authors have considered “best.” Shear
coefficients for a number of different cross sections are found.
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Introduction concluded on the basis of the experimental results that Timoshen-

ko's value of the shear coefficient was best for this problem as
ell.

In Hutchinson and El-Azhafill] a series solution for the com-

etely free hollow cylinder was compared with the Timoshenko

m theory. Armenas, Gazis, and Herrmani2] presented

Timoshenkd 1] was the first to introduce shear deformation,
well as rotary inertia, into the derivation of vibrating beam theory.
He introduced a shear coefficient to account for the variation ]‘
the shear stress across the cross section. Timoshenko, in thatE

paper, used a value of 2/3 for a rectangular cross section. MalWensive tabulated results for infinitely long hollow circular cyl-

authors have found and used different values. Kari@kalid an e | eissa and Sd3] gave accurate results for a free ended
excellent review of all the various shear coefficients that ha llow circular cylinder. These three references will be used to

been tried. His conclusion was that the values implied in TimoSRpack the new shear coefficient derived for this problem.

enko’s[3] come the closest to experimental results. Those valuestye approach used in this paper, to get around the discrepancies
arek=(6+12v+6»%)/(7+12v+417) for the circle andk=(5  inherent in beam theory, is to choose a “best” guess for the stress
+5v)/(6+5v) for the rectangle. Those coefficients were foundie|d and a “best” guess for the displacement field. A variational
for the circle by matching with the Pochhammer-Chree solutiofigrm is then used in which these two fields can be incompatible.
for long wavelengths, and for the rectangular by matching witfihe variational form used is the Hellinger-Reissner principle, see
the plane stress solution. | will refer to those two values as TiReissnel14]. The results of this approach are then compared to
moshenko’s values. Cowpd#] derived shear coefficients for the Timoshenko Beam solution for long wavelengths, and an ex-
various cross sections for the static problem. His values agnession for the new shear coefficient is found. To set up the basis
with Timoshenko’s values only for the case when Poisson’s ratigf comparison, the elementary Timoshenko beam formulation is
is zero. carried out first.

In Hutchinson[5] a highly accurate series solution for a com-
pletely free beam of circular cross section was compared with
Timoshenko beam theory and it was concluded that TimoshenkcE:ﬁememary Timoshenko Beam Formulation

value was best for long wave lengths. Leissa anfiéddeveloped . .
J g oe3 b _The sign convention for beam geometry and shear and moment

a highly accurate Rayleigh-Ritz solution for the circular cross sec . . A4 S
tion and compared their solution to Timoshenko beam theory Lgsed throughout this paper is shown in Fig. 1. The assumption is

ing Cowper's shear coefficient. In a comment of that pape'?1aOIe that the beam is symmetfie., 1,,=0). The rotation of the

: . foss section is denoted gs The slope of the displacementis
Hutchinson[7], it was shown that for long wavelengths, use Oﬁﬁde up of two effects. The rotation of the cross section plus the

Timoshenko’s values of shear coefficient gave b_etter res?ults thgdditional slope caused by the shear. If the shear were constant
use of Cowper's. Kanek2] also made comparisons with the -

experimental work of Spence and Seld8l, Spinner, Reichard over the cross section the additional slope wouldwb&A. The

and Tefft[9], and his own experimental results for both the cir;;?;rt]?it Istulshnt?]ta??ﬂztzgz:ﬁgg; t:l()tgg\%ei(fgl'}_l\or_;_ﬁjsa shear coef-

cular and rectangular cross sections.

In Hutchinson and Zilmef10] a three-dimensional series solu- ,
tion and a plane stress solution for the completely free beam was v'i=yt KGA @
compared to the Timoshenko beam theory for rectangular cross ) ) o )
sections. The plane stress solution compared very well with thédiere primes denote differentiation with respectxtoThe mo-
Timoshenko beam theory using Timoshenko's shear coefficieAt€Nt curvature relation is
We were not able to use enough terms in the series solution to do M=Ely' o)

X ) ; A
a close comparison. For the solid cylinder problem the order of
the characteristic matrix is the number of terms in the axial dire§ummation of forces in the vertical direction on a differential
tion, whereas, for the rectangular cross section the order of ement gives
matrix isn,ny+nyn,+n,n, wheren,, n,, andn, are the number V' =pAp @)
of terms in thex, y, and z-directions, respectively. Kanek@]
where dots represent derivatives with respect to time. Summation

Contributed by the Applied Mechanics Division offE AMERICAN SocieTy of ~ Of moments on a differential element gives
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED p
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, June M'+V= p| zl//- (4)
7, 2000; final revision, August 15, 2000. Associate Editor: R. C. Benson. Discussion. . . . .
on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Dep%]{mmatmg V and M from the above four equations gives the
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-479f0llowing two equations:
and will be accepted until four months after final publication of the paper itself in the
ASME JOURNAL OF APPLIED MECHANICS. ElL,y"+ (v’ — y)kGA=pAD (5)
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y y cantilever is the only beam loading case for which an exact solu-

M 'Y tion is available in the literature. The functiohsandf,, defined
¢w\ above, are the in-plane distribution of the shearing stresges
C —7x z and,,. The tip-loaded cantilever solution can be found in Love
v [15]. That solution yields
Fig. 1 Coordinates and positive moment and shear sign con- oo 1 5’_)( . V_y2 (2— V)22 22)
vention for the uniform beam 7201+ ay 2 2

d
—X+(2+ v)yz

r (23)

(v" =" )KGA=pAD. (6) =505

In order to do the comparisons necessary in the next step itwherey(y,z) is a harmonic function which satisfies the boundary
necessary to solve these equations for a wavelengtid then let condition
the wavelength increase. To this end the displacemeatd the

2 _ 2
rotation ¢ are expressed as follows: X[, (2-v)z 2+ v)yz (24)
) ) an N2 2 z
v =B sin(ax)sin(wt) ©)
) on the boundary of the cross section. Solutionsyfare available
= C cogax)sin(wt). (8) in Love[15] and Cowpef4] as well as in a number of textbooks.
The wavelengttL is Some interesting properties &f andf, are as follows:
L=1la. ©) f fi(y,2)dA=1, (25)
Substituting Egs(7) and(8) into (5) and (6) gives A
akGA —El,a®—kGA+pl,w?](B] (0 f
= fo(y,z)dA=0. 26
— a’kGA+ pAw? kGA«x [C} [OJ A 2(y:2) (26)
10
) ) o ) (_ ) The shearV in Egs. (20) and (21) will be expressed as in the
Setting the determinant of the coefficients in ELp) to zero gives previous sections by combining Eq®) and (4) thus,
| E 12 E -
gt 2o\ 1+ —| -\ —= V=1,(py—Ey"). (27)
A a+Aa)\(1+kG> )\Asz 0 (12) . z - . o -
] i The dynamic form of the Hellinger-Reissner principle for this
where the frequency parameteiis defined as problem can be written as
4 pAw2 t,
A= El, - (12) 5J . l{oxu,x—aileJrTxy(u,y+v,x)—7§y/2G
t, J Vol
The solution for a simple beam =X\, and as the wavelength
increases botlx and\ approach zero. The first two terms in Eq. + 7 (U, T W,,) — 7'52/26* %pu,ff %pv.f
(12) are fourth order, the third term is sixth order, and the last
term is eight order. For comparisons in the next section the eighth- - %pW,f}dVOI dt=0. (28)

order term will be neglected. . . . . .
Introduction of the definitions in Eq$13) to (21) and integration

. . over the cross-sectional area yields
New Timoshenko Beam Formulation y

The displacement and stress fields are described as follows:

ty 1 .
5f J[—E|Z¢’2+|Z(EW’—p¢)(w—¢’)
ty JL 2

u=—y(xt) (13)
1% 2, 14 >, _K(Edlu_ l/f)lﬂ”c _i(_EI,Z/,’+ 17[/)2C _E I l;//2
U:<P(X‘t)+§y ¥ _EZ ¢ (14) 2 p 1 2G P 2 2p z
w=vyzy’ (15) 1 ; - V2.
e 50| QP vl (1= 1)+ - §/2C5 | dLdE=0 (29)
ox=—Eyy’ (16)
where the area integrals are defined as follows:
o,=0 a7
0,=0 (18) A=JdA IZ=Jy2dA |y:fz2dA (30)
A A A
7,,=0 (19)
Vv Clzf(flyz—f122+2f2yz)dA (31)
Txyzl_fl(yxz) (20) A
v C =f f2+12)dA 32
TXZZI_fZ(yrz)' (21) 2 A( 1 2 ( )
z

The displacement field is chosen consistent with the assumption -~ 4.4 2.2

that plane cross sections remain plane after deformation. The nor- Cs= fA(y +2z°+2y°z9)dA. (33)

mal stresses and the shear stregsare also consistent with this

assumption. The shearing stressgsand 7,, are chosen consis- Eliminating higher order terms and expanding the expressions in
tent with the distribution in a tip-loaded cantilever. The tip-loade#q. (29) yields

88 / Vol. 68, JANUARY 2001 Transactions of the ASME



c |
Lo\ — ZN6—C2\B=0. (40)

L1 . .
5J jL{§E|Z¢'2+E|Zl//"(/fElzt//"(p'p|21//1//+plzl//go' )\4*a4+2C5a2)\4*|— y
ty z
VE E2 1 .1 The fourth-order terms in Eq$11) and(40) are identical. Equat-
- 7C11//’2— %szﬁ”z— 50! 2= szipZ ing the sixth-order terms in Eqél1) and(40) and solving for the
shear coefficienk yields

vp s _
— 5 =1y ]det—O. (34) e — 2(1+vw) | 41)
. . . _
Applying the Calculus of Variations to E¢34) yields the follow- [rzz Cyt V( 1 |Z”

ing two equations:
whereC, follows from Eqgs.(31), (32), and(37) as
e A L T

2

C . v |
p 4 p p(l_l)¢,:0 (35)

Iz

C4=ff[v(fly27f122+2f2y2)+2(1+v)(fi+f§)]dA.
Py PR g 36 " 42
v'-g¥ EL%t2E B U= (36) (42)

where Shear Coefficients for Various Cross Sections

E In this section shear coefficients for a variety of cross section
C,=—vCy— 6C2. (37) are derived from Eq(41). With the exception of the thin-walled
cross sections, all of the following results were calculated using
Treatinge and¢ in the same way and were treated in Eq$7) the value ofy taken from Love[15] (pp. 335—33Y. It should be
and (8) yields the following: noted that Love used the coordinateandy in the plane of the
cross section, whereas, | am usipgnd z in the plane. To get

C I
a®—Csa\* — a2+ LV RN {B)

0 from Love’s notation to mine changeto y andy to z. The func-
I, A c :[0} (38) tionsf, andf, are calculated from Eq€22) and (23), and the
24 3= Cear? coefficientC, is calculated from Eq(42). All calculations in this
5 section were carried out using Mathematica.
where . .
Circular Cross Section.
| v |
Cs=— 1——(1——y . (39) 6(1+ )2
A 2 I, I (43)
. . . : 7+12v+41°2
Setting the determinant of the coefficients in Eg8) to zero,
noting that\® can be expressed ad«? and dividing bya? gives Hollow Circular Cross Section.
|
. 6(a%+b?)2(1+v)? "
"~ 7a*+34a%b?+ 7b*+ v(12a*+ 48a%b?+ 12b%) + v3(4a* + 16a%b?+ 4b%) (44)
whereb is the outer radius and is the inner radius.
Elliptical Cross Section.
. 6a°(3a”+b?)(1+v)? 45
~ 20a*+8a2%b?+ »(37a*+ 10a%b?+ b*) + v?(17a*+ 2a%b2— 3b*) (45)
I
where the bounding curve is definedy#$a®+z%/b%>=1. and f, required in Eq.(42). As an example of this consider the

thin-walled circular cylinder. The shear stress from the elementary

Rectangular Cross Section. formula is found as

C4=zza°h(—12a?— 15va%+5vh?) VO v
T=W=—T9X=|—825in0. (48)
215 _ -
+2 16v°0°| nma btan)'( b )) (46) The shear stress can then be expressed as
= (nm)>(1+v) \VJ
Tyx=— Tgx SINO= I—«’Sl2 Sir? 0 (49)
2(1+v)
7255 Cat v 1- ?) Tyx= Tgy COSO= — I—a2 sin @ cosé. (50)
where the depth of the beafy-direction is 2a and the width of From the definitions of ; andf, it follows that
the beam(z-direction is 2b. a2
f,=a2sir’ 0 (51)

Thin-Walled Cross Sections. For thin-walled cross sections 2
the shear stress distribution can be found from the elementary f2=—a"sinf cosf. (52)
shear formula. That value of shear stress can be used to firfd th&'he shear coefficient which comes from this is
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Table 1 Comparison of the frequencies from Table 9 in Leissa 1.0
and So [13] with the frequencies from Timoshenko beam =50
theory using the new shear coefficient and Cowper’s shear co- 0.8 a=u.
efficient. D;/D, is the ratio of the inner diameter to the outer = a=0.5
diameter. S and A refer to the symmetric and antisymmetric £
modes. The “num” in the second column refers to the mode =
number. The tabulated frequencies are  wR,\p/G where Ry is &
the outer radius. L/Dy=5 and »=0.3. Lg
Dy/Do| 0.1 0.1 0.5 0.5 0.9 0.9 5";
num S A S A S A
L&S 1| 0.1651] 0.3990] 0.1776] 0.4096] 0.2018] 0.4344
New 0.1651] 0.3989] 0.1776] 0.4098] 0.2022] 0.4386
Cowper 0.1649] 0.3972] 0.1771] 0.4064] 0.2012] 0.4331
L&S 2 | 0.6811] 0.9807] 0.6726] 0.9344] 0.6740| 0.8756
New 0.6807| 0.9802] 0.6740] 0.9396] 0.6929] 0.9237
Cowper 0.6760[ 0.9711] 0.6655] 0.9244] 0.6810] 0.9032 Fig. 2 Shear coefficient versus outer diameter to wavelength
ratio for an infinitely long hollow cylinder. a is the ratio of the
L&S 3 | 1.2835 15718 1.1842[ 1.3469] 1.0469| 1.0874 inner to outer radius. Straight horizontal lines are the new
’gZ‘a’l — :‘Sggil 1:;;: ngg :';g;g H??g Hi;; shear coefficient and the curved lines are the coefficient which
P : - - - - - is required to match the true solution.
1+ moshenko theory. Fa=0.5 theD/L would have to be less than

(53) about 3.5, whereas for a solid cylindea<£0) theD/L could be
as large as about 5.

. . . The shear coefficient for an elliptical cross section in &d)
Evaluation and Discussion of Results equals the one for the circular cross sectionderb. Plots of the

The shear coefficient for the circular cross section in @8) reciprocal of the shear coefficient as a function of the width-to-
corresponds exactly to the shear coefficient implied in Timoshedepth ratio of the elliptical cross section are given in Fig. 3. The
ko's 1922 paper([3]). As pointed out in the Introduction this plots show both the new shear coefficigsblid line) and the
coefficient has been widely accepted as “correct” and verified b@owper coefficientdashed lingfor values of Poisson’s Ratio of
both experiment and by accurate three-dimensional solutions. 0.0, 0.25, and 0.5. For a Poisson’s ratio of 0.0 the new shear

The shear coefficient for a hollow circular cross section in Egoefficient and Cowper's shear coefficient coincide.
(44) equals the one for the circular cross section in @8) when The new shear coefficient for the rectangular cross section cor-
agoes to zero. Comparisons of the new coefficient with Cowpertesponds to the Cowper coefficient for a Poisson’s ratio of zero. It
coefficient are made in Table 1 using the accurate frequency vabrresponds to Timoshenko'’s value when the width dimension is
ues from Leissa and 9d3] for the completely free beam. It canmuch less than the depth dimension, but it is a function of the
be seen from this table that for long wavelengths the frequenci@gith-to-depth ratio. None of the many values listed in Kaneko
are closer using this new coefficient than Cowper’s coefficieri2] have the shear coefficient as a function of the width-to-depth
Comparisons were also made to the infinitely long hollow cylinratio, although Cowper states, “It is remarkable tKat indepen-
der. Over 200 numerical values given in Armkas et al.[12] dent of the aspect ratio of the rectangle.” Figure 4 shows a plot of
were compared to the values computed using the new coefficigié reciprocal of the shear coefficient as a function of the width-
and Cowper’s coefficient. A sample of these results is given to-depth ratio for values of Poisson’s ratio of 0.0, 0.25, and 0.5.
Table 2. Again, it can be seen that the new coefficient gives beti®s mentioned in the Introduction, the way that Timoshenko’s
frequencies than the Cowper coefficient. The hollow cylinder s@alue was found was to match the plane stress solution. This new
lution was also used to determine the range of applicability of thmefficient does match the plane stress solution when the width-
Timoshenko beam theory for hollow cylinders. Figure 2 showsta-depth ratio is small. A comparison to the three-dimensional
plot of the shear coefficient which would be required to match thgeries solution is shown in Table 3. The series solution is for a
infinitely long three-dimensional theory with the Timoshenk@ompletely free beam. The number of terms used in the series
beam theory. In this plot the new shear coefficient values are thvere chosen to make the number roughly correspond to the di-
straight horizontal lines. It can be seen that the required sheaensions, and to keep the order of the characteristic matrix less
coefficient approaches the new shear coefficient value as than 2000. The example was chosen so that the depth and length
diameter-to-wave-length ratid/L approaches zero. For the thin-of the beam remain constant so that if the shear coefficient were
walled cylinder(a=0.99 anda=0.9) the D/L would have to be
less than about 0.5 to produce reasonable frequencies using Ti-

T 2%

4
0c 7
3 P
Table 2 Comparison of the frequencies from Armena  kas et al. g3 =
[12] with the frequencies from Timoshenko beam theory using 3 L
the new shear coefficient and Cowper’'s shear coefficient. His & S ——
the thickness of the cylinder wall R is the mean radius of the S L= —
) k5 ==
wall, L is the wavelength and Q=wH /p/G/ . £ | ——— =00
H/R| H/L New k | Cowper k| @ New Q Cowper |2 Armenakas 2 \
0.25 [0.001 [ 0.5789] 0.5438][0.0000144 [0.0000144 [0.0000144 v
0.25 [0.005 | 0.5789] 0.5438]/0.000359 [0.000359 [0.000359 g0
0.25 [0.01 | 0.5789] 0.5438]/0.00141 0.00141 0.00141 = -0,
0.25 [0.02 | 0.5789] 0.5438]/0.00533 0.00531 0.00533 -
0.25|0.03 [0.5789] 0.5438[0.01106 0.01099 0.01106 0 2 4 8 8 10
0.25 [0.04 | 0.5789] 0.5438/0.01793 0.01774 0.01789 Width to Depth Ratio
0.6 |0.01 |0.6408] 0.6041]0.000621 [0.000621 [0.000621
0.6 |0.05 ]0.6408] 0.6041]/0.01432 0.01427 0.01432 ) . ) ) )
0.6 ]0.10 | 0.6408] 0.6041|0.04777 0.04729 0.04776 Fig. 3 Shear coefficient reciprocal versus width-to-depth ratio
0.6 |0.12 [0.6408] 0.6041[0.06356 0.06278 0.06351 for an elliptical cross section for different values of Poisson’s
0.6 10.14 0.6408] 0.6041/0.08000 0.07886 0.07987 ratio. (—) new coefficient; (— — —) Cowper‘s coefficient.
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2 The use of the thin-wall approximation for calculation of the
thin-walled circular cylinder led to exactly the same result that
could be found by letting approachb in Eq. (44) for the thick-

\=9“ walled cylinder. This approach is applicable to any thin-walled

beams such as box beams or wide flange beams.
0 v=0.25

Static Problems

-1 The main thrust of this paper has been concerned with the dy-
namic problem but since the work of Cowpdi was for the static

Shear Coefficient Reciprocal

v=030 problem a brief look at the static problem is in order. The govern-
) 20 ] > 3 ing equations for the static problem corresponding to E86)
Width to Depth Ratio and(37) can be found to be
Fig. 4 Shear coefficient reciprocal versus width-to-depth ratio Y-+ % W'=0 (54)
for a rectangular cross section for different values of Poisson’s I,
ratio
Y"=0. (55)

Comparing the solution of these equations for the end-loaded can-
) . ) ) tilever to the solution of the beam including the shear deformation
not changing the dimensionless frequency would remain constaghg to the following equation for the shear coefficient:
If one were to use Cowper’'s coefficient the shear coefficient
would be 0.8571 and the frequency would be 0.10785. If Timosh- ‘ 2(1+ )12

enko’s coefficient were used the shear coefficient would be 0.8824 s AC, (56)

and the frequency would be 0.10790. It can be seen in the table - ) o

that the frequency values for the three-dimensional solution anéiS coefficient was found for the deflection of the original cent-
the Timoshenko beam solution using the new coefficient followpidal axis. If the deflection is for the mean deflection of the cross

the same trend. section, as was done by Cowqdi, then the expression becomes
Experimental results for the rectangular cross section have been 2(1+ )

limited to the square cross section with the exception of the work Kse=— (57)

of Spinner et al[9]. The work of Spinner et aJ9] did not contain éC " v 1— I_.\/

enough data to prove or disprove the dependence of the shear I§ 4t 2 I,

coefficient on the aspect ratio. Kanekd| reduced the Spinner
et al.[9] data on the assumption that the shear coefficient was
a function of the aspect ratio and came out with a shear coefficier}. . \ - : ,
which was a little less than the Timoshenko’s value, whereas th |_C|ent corresponds to Cowper's Coefflcu?nt only when P0|_sson S
new coefficient is greater. Kanekd'8] own experimental results ratio equals_zero. For the cases Of. the cwcular cross section and
for a square cross section agree completely with Timoshenkd nollow circular cross section this new static coefficient is the
value. Spence and SeldjB] found the shear coefficients whichS@me as the dynamic coefficients given in EdS) and (44).

would match their experimental results for three different square .

cross sections. Those results are shown in Table 4 along with (rR@nclusions

values of Timoshenko’s coefficient and the new coefficient. The The new shear coefficient is in complete agreement with the
best that can be said of the experimental comparisons is that {2gues that have been found from three-dimensional elasticity
new shear coefficient is not out of line with experimental resultsheory for the circular cross section and the plane stress solution.
but the experimental results neither confirm nor negate the depgir the hollow circular cross section it is also shown by compari-
dence of the new shear coefficient on the aspect ratio of the resién to three-dimensional elasticity to be correct. For rectangular
angular beam. cross sections the new coefficient was found to be a function of
the aspect ratio. Previous researchers have all either assumed it to
not be a function or have derived it in such a way that it was not
a function of the aspect ratio. Comparison to a three-dimensional
series solution indicates that the new coefficient is probably cor-
rect, but experimental evidence is inconclusive.

ote, that the half in the denominator makes this coefficient dif-
1ent from the dynamic coefficient defined in E41). This co-

Table 3 Comparison of frequencies found using a three-
dimensional series solution  (3-D w) with frequencies found us-
ing the new shear coefficient (New w). The n,, n,, and n, are
the number of terms in the series inthe  x, y, and z-directions,
respectively. L/2 is the half-length, a is the half-depth, and b is Acknowledgment
the half-width of the beam. The new shear coefficient is in the
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ny | ny | nz [L2] a b 3-Dw | New w k
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Modeling the Fracture of a
Sandwich Structure due to
Cavitation in a Ductile Adhesive
Layer

S. Zhang
. 1 The strength and durability of adhesively bonded sandwich structures often depend on the
K. J. Hsia mechanisms of fracture, which in turn depend on the properties of the adhesive and the
Mem. ASME, microstructures of the interface. When the thin adhesive layer is ductile, cavitation either
within the layer or along the interface is often the dominant failure mechanism. In the
Department of Theoretical present paper, fracture due to cavity growth in a thin ductile layer is analyzed. A new
and Applied Mechanics, method utilizing fluid mechanics solutions is developed. Solutions of fluid flow field are
University of lllinois at Urbana-Champaign, used to approximate the plastic deformation field in the corresponding solid body with a
Urbana, IL 61801 cavity. The equilibrium condition is satisfied by using the principle of virtual work rate.
Stress-separation curves due to cavitation in the thin layer can thus be obtained. The
method is validated by reevaluating the one-dimensional problem of cavity growth in a
sphere—a problem for which an exact, analytical solution exists. A two-dimensional
plane strain cavitation problem is analyzed using the new method. The stress-separation
curves and the fracture resistance due to this mechanism are obtained. The results show
that both the stress-separation curves and the fracture resistance are sensitive to the
strain-hardening exponent and the initial void size, but not the yield strength of the
material. The new method has clear advantages over numerical methods, such as the
finite element method, when parametric studies are performed.
[DOI: 10.1115/1.1346678

1 Introduction crack tip. The location and density of void nucleation, however, is

often related to the microstructures of the interface, such as initial

i The strength andtdlurgblllty gf sgnglv;lch sttrr]yctu(;(re]s c_onsllstmg re density and interface roughness. For given microstructures,
WO ceramic or metal pieces bonced by a thin adnesive 1ayer gi& jnitia| void density can be considered as given. Failure of such

determined by various failure mechanisms. These fracture mecQgpqyich structures is then directly related to the microstructures
nisms include interfacial debonding and other processes such @$he interface.
cavitation or microcracking within the adhesive layer or at the gracture process of a material can be characterized by the
interface. Identifying and understanding the failure mechanismsgﬂess_separaﬁon curve ahead of the crack tip. For purely brittle
these structures will greatly enhance our ability to design bettgfacture of crystals, such stress-separation curves can be derived
more durable structures. from the interatomic potentials. When nonlinear processes are in-
The failure mechanisms, however, are ultimately determined lglved, however, derivations of such stress-separation curves
the properties of the adhesive and by the microstructures of theist invoke micromechanisms during fracture. For example, plas-
interface in sandwich structures. The current research stems friiondissipation must be taken into account in the case of elasto-
the need to tailor the surface microstructures of aluminum panglastic fracture. Analyses of crack growth resistance due to plastic
by surface treatments in preparation for adhesive bon¢ieg, dissipation were carried out by Tvergaard and Hutchinshel,
e.g.,[1,2]). Within the constraints of surface treatment technoWwho identified several dimensionless groups of material param-
ogy, a guideline to achieve an optimized microstructure is highsters characterizing the fracture process. An equivalent stress-
desirable. separation curve for fracture due to cavity growth and coalescence
In many such structures, the adhesive is often a soft or ductifeay be derived from the detailed study of the cavitation process.
phase. It may be a polymer-based material for joints in aircrdfl the present paper, failure due to cavity growth and coalescence
structures, or ductile metal in metal/ceramic composites. Thetdl be studied by analyzing the stress-separation curves during
have been many studies on failure mechanisms within a ductfiaVity growth. ] )
layer bonding two substrate pieces togetH@-7]). When the Cavitation has been studied by_ many researchers since the
adhesive layer is sufficiently soft, the failure process is crack@60s. The pioneer work by McClintodk0] revealed that the
propagation by void growth and coalescence within the ducti¥o!ume expansion rate of a long cylindrical cavity in a nonhard-

layer or along the interface. In this case, a large hydrostatic str&&4ng material subjected to transverse tensile stress increases ex-
nentially with the transverse stress. Rice and Tra¢d4y ana-

is developed in the ductile layer due to the constraint on plas}f’g d th h of inal herical void bedded i
flow by the substrate, leading to void nucleation ahead of th ed the growth of a single spherical void embedded in an

infinite body subjected to remote uniform tensile stresses. They
o whom correspondence should be addressed found that the ratio of void growth rate to remote strain rate in-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF Crease.s exponentlally_ as the r_atlo of mea.n normal strgss to ylel.d
MECHANICAL ENGINEERS for publication in the ASME OURNAL OF AppLiED  SITESS increases. Their analysis also predicted that void growth is
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Octmainly due to volume change rather than shape change of the void
1, 1999; final revision, July 19, 2000. Associate Editor: B. Moran. Discussion on thghen the remote normal stress is large. Both the above analyses

paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departme . P . .. .
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and will re carried out on an infinite bOdy' which is Inappropriate for

be accepted until four months after final publication of the paper itself in the ASMEAVities in a confined ductile layer. Needlenfa] and Anders-
JOURNAL OF APPLIED MECHANICS. son[13] studied void growth numerically in a finite body using
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the finite element method. In these studies the interaction betwedfith the latter the plastic deformation is to be represented by a
voids was taken into account, but the amount of cavity growthotential flow generated from a point source. Both methods are
was limited. More recently Tvergaafd4] analyzed void growth capable of solving this one-dimensional cavitation problem ana-
in a thin, ductile layer between ceramics using finite elemeitically, as shown below.
method, and employed a remeshing technique for the final stag . . .
of growth. These numerical studies require tremendous (:omputingjz'1 Solid Mechanics Method. In what follows, capital let-
power, and are usually rather time-consuming. ters stand for varlaples |n.the initial configuration and Io_wercase
If the material of the ductile layer obeys an elastoplastic co@N€S stand for variables in the current, deformed configuration.
stitutive law, the nonlinearity of the governing equations seems kst fRO anc_iro be ctlse rag" Otf) thﬁ CaV('jt.Y "; trl:e initial t;’:md gurre_nt
exclude the possibility of obtaining exact solutions for all but thgonfiguration, andk, andr, be the radii of the outer boundary In
one-dimensional case studied by McClintofk0] and Huang W€ initial and current state, respectivefyig. 1). By symmetry,
et al. [15]. In the present paper, to derive the stress-separatible 'U€ strain components in spherical coordinates, ) are

curves for a material undergoing cavitation in a thin ductile layer, 1 r

we develop a novel approach to finding an admissible deformation E9=8,= T 58 =" Inﬁ (2a)
field around the void. The approach utilizes fluid mechanics solu-

tions of a point source in a finite unit cell, and approximates the r

plastic deformation field with a fluid flow field. The appropriate- se=2ln(— =g, (2b)
ness of the approach is verified by reevaluating the spherically R

symmetric cavitation problem for which an analytical solution exyhere, is the von Mises equivalent strain, defined as

ists ([10,15)). A two-dimensional plane strain problem is then

analyzed to obtain the stress-separation relation of a unit cell with 2

a center cavity. The results show that the stress-separation rela- ge™ '\ 3 %ij i ©)

tions depend not only on the material properties but also on the

geometrical parametetmicrostructure such as initial void size Wheree;; (i,j=r,,¢) are the logarithmic strain components, and

and void spacing. the summation convention applies in E@). The equilibrium
condition in terms of radial stress, and hoop stress, in the

2 Spherically Symmetric Cavitation current configuration is

We begin our discussion by considering the spherically sym- do, 2
metric cavitation problem. Consider a spherical void centered in —+ —(0,—0y=0. (4)
an isotropic, rigid-plastic sphet@ither perfectly plastic or strain dr T
hardening without elastic responseubjected to hydrostatic ten- The von Mises equivalent stress in the spherically symmetric case
sionos (see Fig. 1. A uniaxial relation between the true stress, can be expressed as
and the logarithmic strairg, of the solid is given by

N Oe=0r— 0y (5)
oloy=1f(e)=|—¢| sgne) (1) Assuming that the material obeys-deformation theory, i.e., the
oy relation between equivalent stress and equivalent strain follows

where oy is the tensile yield strength of the soli€ is the that of uniaxial relation in Eq(1), one has
Young's Modulus, N is the hardening exponent fON<1),
sgn(e) represents the sign ef The limit N=0 corresponds to a
rigid-perfectly plastic material. oy

Two different methods to obtain the relation between the hy- . L . .
drostatic stress and the void expansion are presented. One meﬁfBﬂr?. the functiorf (¢,) is given in Eq.(1). Using the boundary
is based on classical plasticity theory in solid mechanics. TI@NItions @ |-, =0.0¢|;~;, = o) and the incompressibility re-
other employs a fluid mechanics approach, and treats the void aguirement (3— rg: RS- Rg), and substituting Eq92) and (6)
point source of material flowing outward under the applied stresato Eqg. (4), one finds

Oy =0y

=f(er) ©)

Initial state Deformed state

Fig. 1 Geometry of the spherically symmetric void in the initial and deformed
states
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o1 Rt R? 2 ro—R3
s O)Z—ZJ ﬁf —=In 1+0—30 dR. 8
% Ry R+ 15— Ry 3 R i N=0.1
) 1 6 ,/E=0.003
Equation(7) gives the relationship between the applied hydro-  —

static stress and the cavity radiug(r). It should be pointed out
that the solution in Eq(7) is identical to that obtained by Huang
et al.[15].

2.2 Fluid Mechanics Method. The problem shown in Fig.
1 can also be solved using a fluid mechanics approach. Consider
potential flow generated by a point source of stren@tlat the
center of the sphere. The velocity components of the potentic
flow in spherical coordinates (0, ¢) are given by

: Q
u,=

4r?

y U(,:U(P:O (8)

Integrating the radial velocity with respect to time with the initial
conditionr|,_o=R gives

4

Qt= 5 (*~RY), (©)

This equation shows thaf—R? is an invariant throughout the
solid body at any specific timé This invariance requirement
implies incompressibility of the material. 44
The strain rate components can be obtained from the velocit
components by taking the derivative of the radial velocity with . 5
respect to the radius or by dividing the radial velocity by, as L
b

o /E=0.001
0 /E=0.002

,/E=0.003

. . . . Q
g =—ge=—28y=—28,=— Py (10) | N=01
- . . ) 1 Ry/R,=0.1
whereeg, is the equivalent strain rate defined as

2
Lo T 0 . . r . .
ge™ Y 3% (1) 0.0 02 04 06 08 1.0

Whereéij (i,j=r,0,¢) are the true strain rate components. By
integrating the strain rates with respect to time and using the in
compressibility condition, one finds exactly the same expressiol
as in Eq.(2). This result shows that the potential flow generated
by a point source gives the same plastic deformation field aroun 6
the void as that by the solid mechanics method given in Sectiol 1
2.1. 5
To obtain the stress-cavity growth relations, we use here th
principle of virtual work rate instead of the equilibrium equation
in solid mechanics. Such an approach is entirely based on th
estimates of the velocity field and strain rate field, and makes us ®
of the constitutive law in an integral sense. The principle of virtual "3
work rate in the current state is 1

R/R,=0.1
o /E=0.003

2 ]

S \%

whereS is the surfacgincluding the outer surface and the inner
surface although the work done on the inner surface is zero sinc 0 y T " . ; T T ; y
it is traction-fre¢ and V is the volume of the solid. Assuming 0.0 0.2 04 08 08 10
again that the material follows th&, flow rule and it is a von (reRIR,

Mises material, one has

1

Fig. 2 Stress versus void radius for the growth of a spheri-

_ 2 0. 13 cally symmetrical void; (a) effects of the initial radius of cavity,
SiJ'_§ é_sij (13) (b) effects of the material constant o/E, (c) effects of the
€ strain hardening exponent N
wheres;; (i,j=r,0,¢) represent the deviatoric stress components
defined as
1
Sij:Uijfgffkk@j (14)
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whereo =0+ 04+ 0,,, andg; is the Kronecker delta. As- dependence of the curves on hardening exponent and weak depen-
suming that the constitutive law between the equivalent true stretence on initial yield strength since the deformation becomes very
and true strain follows the uniaxial relation expressed in (&Y. large around the void as it grows. But the prediction of strong
and using the flow field given in Eq&8), (10), and(11), one can dependence on the initial cavity size is interesting.

rewrite Eq.(12) as

Os

1 , 3 Fully Confined Two-Dimensional Void Growth in a
= 3
oy wavf[ZIn(r/R)]r av. (15) Thin Ductile Layer

Changing the variables to those for the initial state by using the!n the previous section we showed that the method of using a
incompressibility condition, one finally obtains the same stresitid mechanics solution to approximate the plastic flow field is
separation relationship as that in Ea@). !ndeed a V|_able one. For the one_—dlmen5|onal problem considered
Using either Eq(15) or Eq.(7), curves of the hydrostatic stressi" the previous section, the solutlon turns out to be exact. But for
versus cavity radius are plotted in FigsaR-(c). Figure 2a) more complicated cases, the solutlon can _only be conjs,ldere_d ap-
shows the normalized hydrostatic stress versus the normaliZ&@ximate. In the present section, we consider a two-dimensional
current radius of the void for prescribed strain-hardening expondifblem. o ) i
and material constants, /E. Curves for three different values of A periodic array of cavities in a ductile layer fully confined by
initial void radius are plotted. The figure shows that the normalibe interfaces, shown schematically in Fig. 3, is considered. Plane
ized stress reaches a maximum value rapidly, then decays modisain deformation is assumed. The cavities can be either com-
tonically as the cavity grows. The solution also shows that Rietely within the ductile layer generated at, e.g., second phase
smaller initial void size gives rise to a higher hydrostatic stress f@grticles, or at the interface generated from the interfacial pores.
a given amount of void growth and a higher maximum stres®ue to symmetry of the problem, the solution should be identical
When the loading process is stress-controlled, reaching the md®t these two cases. The stress-separation curwe3, due to
mum load results in instability of void growti3,16—18). When cavity gromh and_coalescenc_e_can be_ evaluate_d by (_:on3|der|ng a
the loading is displacement-controlled, a softening stdgad representative unit cell containing a smglg cavity. Itis expectgd
drop is experienced. that, because of the confinement, plastic flow-induced cavity
The effects of strain hardening exponent and yield strength §foWth may start before the strength of the interface is reached.
the stress versus void growth behavior are shown in Fige—2 Due to the constraint by the rigid m_terface, hlgh tr|a>_<|‘_e1l stresses
(c). Figure 2b) shows the normalized hydrostatic stress versyéll de\_/elop in the thin layer and will be the main driving force
normalized void radius for different values of the material corf®r cavity growth. ) ) o )
stant o /E for given initial radius of the cavity and strain- 1he geometry of the unit cell is presented in Fig. 4. The void
hardening exponent. Figuréc shows the normalized stress ver-SPacing is o, the layer thickness ist%, and the initial radius
sus normalized void radius for different values of strain-hardenir®j the void isR, . A Cartesian coordinate system with origin at the
exponent for given initial radius of the void and material concenter of the cavity is established as in Fig. 4. Uniform tensile
stants. The figures show that the stress versus cavity grovitess.os, is applied normal to the thin layer. The periodicity
curves are insensitive to the value of the normalized yield strendgt@ndition requires that the width of the unit cellwg, remains
oy /E, but rather sensitive to the strain-hardening exponent af@nstant during deformation. The separation displacemgrig

the initial radius of the void. It is not unexpected to see stroryaluated at the interface=*h,. o _
To obtain the approximate plastic deformation field in the unit

cell, we now consider a potential flow generated by a source of
strengthQ located atz=0 in an infinite channel in the domain
—Wo<y<wp and —o<x<w®; herez=x+yi is the complex
variable. The complex potentiaf of the flow field is found by
conformal mapping, as

zp(z)zgln sin Tz . (16)
2 2W0

The velocity field corresponding to the potential flow is

z
Fig. 3 Schematics of a cavitated ductile interface layer with UX_in = &cot e . 17
periodic cavity distribution 4w 2wq
—
—
O,
—

Fig. 4 Unit cell model used in the two-dimensional void growth analysis

96 / Vol. 68, JANUARY 2001 Transactions of the ASME



6
100 h/w=3.0
e 5 | N=0.1
¢,/E=0.003
4 Ry/W,=0.01
0.95 -
. < >
2 <
o= b
0.90
0.85 -
O T T T 1 T
T T . T . T . . . 0.0 0.1 0.2 0.3 0.4
0.0 0.2 0.4 06 08 1.0
y/w, Ex
Fig. 5 Uniformity of the velocity field at the interface x=hg, 4.0
3.5 N=0.1
The Cauchy strain rates corresponding to the velocity field cal | R,/w,=0.1
be obtained by differentiating Eq17), as 3.0 o JE=0.003
. L 7Q p Tz 1
Eyx— Exyl = — —CSCH| — 25 ¢ ,/E=0.002
T gwd 2wy > 4
(18)
. ) . . 7TQ ln? - b"’ 2.0 cY/E—O.001
Exy— Eyyi = —1— csch| —|. ]
v 8w3 2w, s
It is easily shown that the flow becomes uniformas = oo ]
(us—uyi =Q/4w, asx— *), leading to vanishing strain rates. 104
In fact, the flow becomes nearly uniform when the location unde
considerationx=h,, is several times larger than the width,. 1
Fi 5 shows the variation of th | velocity at x= 05 . .
gure 5 shows the variation of the normal velocuy at x 0o o oo o o

+hy across the width of the channel for different values of the
ratio hy/wq. In this figure,u, is normalized byu,, which is the €y
normal velocity atx=hy, y=0. It is seen that when the ratio of
ho/wy is unity, the maximum difference in, across the width is
about 15 percent. When the ratio is 2.0, the maximum differenc
in u, is only two percent, and, is approximately uniform across
the width of the channel. In the following, we use the solution of 5
the infinite channel to approximate the plastic flow field in the
finite sized unit cell in Fig. 4.

The equilibrium condition can be satisfied in a weak form by >
using the principle of virtual work rate, as ;.n

Ry/w,=0.1
,/JE=0.003

Wo Wo
) \ )

where AT] is the difference in traction at=*h, between the
average normal stregs; and the stress corresponding to the plas-
tic flow, U} andu! are the displacement ratesxat + h, given in

Eg. (17), ands;; , éij are the true deviatoric stress and true strain 0 . : , : . , , .

rate in the current configuration. Generally, when the ragiow, 0.0 0.1 0.2 03 0.4

is sufficiently large(say,=1), the contribution of the last term in

Eq. (19 is negligibly small. In our numerical results, the contri- Ex

bution from this term is ignored. Fig. 6 Stress-separation relations for two-dimensional void

Assuming that the material obeys the plastic stress-strain regsowth; (a) effects of the initial radius of cavity,  (b) effects of
tion given in Eq(l), and applyinng_ﬂOW theoryl we can obtain the material constant oylE, (c) effects of the strain-hardening
the relation of separation stress versus the displacemextat €xponent N
*+h, following the same steps as in E@.3) through Eq.(15), as

os 1 ) (undeformedl coordinates. The corresponding relations between
= 6fvf(8e)8edv- (20)  the two sets of variables can be obtained by solving the differen-
tial equations in Eq(17).
The integration in Eq(20) can be evaluated by a change of vari- Results of the stress-separation curves are presented in Figs.
ables from Eulerian to Lagrangian coordinates, i.e., to the initié(a)—(c). In these calculations, void spacing is taken to be the

Oy
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Fig. 8 Evolution of void shape for the two-dimensional case
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s/h, _ _ .
drawing an ellipse based on the long and short axes. Figure 8
Fig. 7 Comparison of the stress-separation curves with Tver- shows an example of the evolution of the void shape under the
gaard and Hutchinson’s calculations prescribed parameteR,/wy=0.3, N=0.1, and oy /E=0.003,

where the numbers Q,1. . ,4represent different instants of time
during cavity growth. The corresponding instants are shown in
Fig. 6(@). It is clear from Fig. 8 that, based on this model, the
cavity mainly grows in the layer-thickness direction. This feature
same as the initial thickness of the layer, itg,/wy=1.0. Figure may be an artifact of the model since the mechanism of necking of
6(a) shows the separation stress normalized by the yield stréggmments is not accounted for.
versus the average logarithmic strain of the cell=In(1
+6/hg), for different initial cavity size, a prescribed strain-
hardening exponertl and normalized yield strengit, /E. Fig- .
ures @b) and (c) depict the effects of the material yield strengttft Fracture Resistance
oy/E and the strain-hardening exponeit on the stress-  For purely brittle fracture of crystalline materials, the fracture
separation curves, respectively. The same trends as those in Fighigjhness can be obtained by integrating the stress-separation
are obtained. Figure(8) shows that, for small initial void size, curve at the atomic level. For a ductile material undergoing frac-
peak separation stregse., cavitation instability under the load-ture due to plasticity induced cavitation, the fracture toughness
controlled loading conditionis reached rapidly at a very smallcan be evaluated by integrating an equivalent stress-separation
strain level with a high maximum separation stress. For examplgurve, such as those obtained in the previous section, at a much
when R, /wg=0.01, 0'g|;nay=5.450y . On the other hand, larger jarger length scale—the microscopic level. In this section we
initial void sizes result in lower peak stresses reached at mughaluate the fracture resistance of a sandwich structure exhibiting
larger strains. The stress-separation curves decay monotonicalisticity-induced cavitation in the thin ductile layer. Only the
beyond its peak stress as the void expands, leaving a narrow nggk-dimensional case will be considered in this section since the
region between adjacent voids. Figuréb)éand Gc) again show  thickness of ductile layer and cavity spacing are ambiguously de-
that the stress separation curves are insensitiwe,t’(E but rather fined for the spherically symmetric cases.
sensitive to hardening exponet The separation curves obtained in the previous sections are sen-
Figure 7 shows the comparison of the stress-separation curé@fve to the initial cavity size and to the hardening exponent, but
between the current result and that obtained by Tvergaard afdy are nearly independent of the ratio of the yield strength to
Hutchinson[8] based on the Gurson model for elastoplastic maroung’s modulus. Therefore, the effect of that ratio may be ne-
terial. Heref, is the area fraction of voids in the initial, unde-glected. A universal expression of the stress-separation curve can
formed state {,= 7TR(2)/4WOhO), vis Possion’s ratiod is the sepa- be written as
ration displacement at the interface. All the parameters in our
calculations are identical to those used by Tvergaard and Hutch-
inson [8] except for the Possion’s ratio since there is no elastic
deformation in our model. The Possion’s ratio in Tvergaard and
Hutchinson’s calculation is 0.3 while in the current model it is 0.%vhereN is the hardening exponend,is the separation displace-
(rigid-plastic materigl The absence of elastic deformation isnent,V; denotes the density of the voids along the interface, and
likely the reason why the current model predicts a lower pedR is a geometrical parameter related to the thickness of the ductile
stress at a smaller displacement level and a somewhat lower sdpger and the spacing between cavities. In the two-dimensional
ration stress than theirs, as shown in Fig. 7. Nevertheless, the tplane strain case, the initial density of cavitds=R,/w,, and
sets of curves in Fig. 7 exhibit general agreement. Due to thtee geometrical paramet€& is the ratio of ductile layer thickness
limitations of their finite element method, Tvergaard and Hutche the spacing between cavitibg/wy.
inson terminated their calculations at a much lower separationAs pointed out by Tvergaard and Hutchind@9], in evaluat-
displacement level than what we did using our model. ing the amplification of the fracture resistance due to plastic de-
It is of interest to examine the shape evolution of cavities dermation, the work of separation per unit ar@ae initial separa-
they grow. Generally, an initially circular cavity becomes elliptition resistancg I'y, and the ratio of peak separation stress to
cal as it grows. Although the exact shape can be obtained bigld stress are two important parameters. The latter can be deter-
following the displacement of each material point on the boundargined readily from the separation curves. The work of separation
of the cavity, here we schematically depict the shape evolution byr the unit cell is

od(&lay=F(N,V;,G,5) (21)
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Fig. 9 (a) Normalized initial fracture resistance versus the
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tance versus the void volume fraction V¢, (c) normalized initial
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w=2fUITS( 8)ds (22)
0

where the exposed surface afea 2wgty, andtg is the thickness
in the out-of-plane direction. In order to use the separation curves
obtained in the previous sectiohig may be rewritten as

I'o

ZWOUY

- Gf: [o(8)oy]exp(e)ds (24)

wheree* denotes the true strain at the boundary of the unit cell
corresponding to the displacemedt . The functional form of
o¢(g)lay can be obtained from the stress-separation curves in the
previous section. Since the separation curves are nearly indepen-
dent of the material constant, /E, the normalized initial fracture
resistance should then be nearly independent\ofE.

Equation(24) shows that the value of the normalized work of
separation per unit area is determined by the integral on the right-
hand side only. The integration can be carried out for given values
of N, V¢, and G. The dependence of the normalized work of
separation on the geometrical parame®ris shown in Fig. ¢a).

For strain-hardening exponeht=0.1 and the void density/;
=0.1, the normalized initial fracture resistantg/2wyoy has a
rather weak dependence @(=hy/wp). The value of the nor-
malizedI"y changes only from 0.95 to 1.17 wh&hvaries from

0.5 to 3.0. Furthermore, when the value@fs larger than about
2.0, the normalized initial fracture resistance reaches an
asymptotic value independent Gf

The dependence of the normalized fracture resistance
I'o/2wyoy On the hardening exponent and on the initial void den-
sity is shown in Figs. @)—(c). They demonstrate thdt, is very
sensitive to the strain-hardening exponeddt,as shown in Fig.
9(c), but moderately sensitive to the void densWy, as shown in
Fig. 9b). For given void density/;, as N changes from the
nonhardening caseN(=0) to a strong hardening casbl€0.3),
the value ofl"y increases nearly sixfold. However, for givinl'
decreases moderately ¥$ increases.

From Fig. 9a)—(c) we can see that the value of the normalized
I’y for the two-dimensional case is in the range of 0.5-1.75 for
N=0-0.2. This is higher than the valu€3.35-0.82 predicted
by Tvergaard and Hutchinsof8]. Tvergaard and Hutchinson
abruptly terminated their calculations when the void area fraction
equals 0.2, and neglected the contribution of the stress-separation
curve beyond that point. This undoubtedly results in a lower work
of fracture than that predicted by our calculations.

5 Concluding Remarks

In the present paper, we have developed a new technique to
solve solid mechanics problems involving large plastic deforma-
tion for which closed-form solutions are difficult or sometimes
impossible to obtain. The technique involves using the fluid flow
field from existing fluid mechanics solutions to approximate the
plastic flow field, and using the principle of virtual work to satisfy
the equilibrium condition. It should be pointed out that the major
difference between flow of fluids and plastic flow of solids is the
following: In the potential flow of fluids, there is no shear stress;
whereas in plastic flow of solids, the shear str¢ge Mises
equivalent stress in the present modslconstant for nonharden-
ing materials or nearly constant for weakly hardening materials. In
general, the method we developed here may be applied to a vari-
ety of solid mechanics problems, as long as the fluid mechanics
solution is readily available.

This technique is used here to address a particular mechanism
of interfacial fracture—cavitation in a thin ductile layer in a sand-
wich structure. Although this problem may be solved using nu-

whereU_’l‘ is the separation displa(_:ement level at which the totaherical methods, as has indeed been done by Tverdadtdis-
separation occurso{s=0), andTs is the resultant force at the ing the finite element method, the method developed here has the
boundary of the cell. The initial separation resistafigecan then clear advantage when carrying out a parametric study involving

be expressed as

U*
FO:W/A=2an Yodd)lay]lds (23)
0

Journal of Applied Mechanics

extremely large deformation. Solving the two-dimensional cavity
growth problem using the present method is much less time-
consuming compared to, e.g., that using the finite element method
with remeshing.
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Theory of Boundary
Eigensolutions in Engineering
A.R. Hadjestandiari | IVlechanics

G. F. Dargush

Mem. ASME A theory of boundary eigensolutions is presented for boundary value problems in engi-
neering mechanics. While the theory is quite general, the presentation here is restricted to
Department of Civil Engineering, poten;ial problgms. Contrary to the traditional approach,. the eigenproblem is formed by
University at Buffalo, inserting the eigenparameter, along with a positive weight function, into the boundary
State University of New Yark, condition. The resulting spectra are real and the eigenfunctions are mutually orthogonal
Buffalo, NY 14260 on the boundary, thus providing a basis for solutions. The weight function permits effec-

tive treatment of nonsmooth problems associated with cracks, notches and mixed bound-
ary conditions. Several ideas related to the convergence characteristics are also intro-
duced. Furthermore, the connection is made to integral equation methods and variational
methods. This paves the way toward the development of new computational formulations
for finite element and boundary element methods. Two numerical examples are included
to illustrate the applicability.[DOI: 10.1115/1.1331059

1 Introduction dimensional problems and a closed surface or surfaces for three-

gimensional domains. Lej represent the normal boundary flux,
hereg=du/dn with n as the outward unit normal t6. Then

ther Dirichlet(u=u on S), Neumann(g=q on S), or mixed(u

Orthogonal functions in the form of trigopnometric series an
their generalizations have been used to solve boundary vai%i'
problems since at least the 19th century with a rigorous mat_—u— on's, and q=q : _ _

. : . ) o = g=q on §; with S,US;=S and S,N ;=)
ematical foundation provided by Fourier, Dirichlet, and others. | bundary conditions may be specified. As we know from the
this classical approach the basis functions are orthogonal over Sory of boundary value problems,is analytic in domainV
problem domain. Detailed accounts of related concepts can : .

ﬁhough in our work,u is assumed to be continuous, it need not
found in the works of Carslay], Courant and Hilberit2], Morse : : Ry
and Feshbacfs], Tolstov[4], and Lanczog5]. be analytic on boundarg Furthermore, at nonsmooth pointgis

oL ' : . not defined. In generalj is a piecewise continuous function on
However, it is clear from integral equation representations thaf, boundary
the bounding surface is actually paramount in the solution of lin- With this béckground in mind, we begin by defining the bound-
ear boundary value problems. Consequently, it is perhaps mage oigenproblem in the following section. Further details on cer-
appropriate to employ basis functions th.at are orthogonal over aspects can be found in Hadjesfand[#, which also in-
boundary. We will see that these functions can be generated Mdes the extension to the theory of elasticity.

solving an eigenproblem in which the eigenparameter appears In
the boundary condition. The new concepts that emerge from this

approach seem to have significance for the general theory @f Boundary Eigenproblem for Potential Theory

boundary value problems as well as for computational mechanics. . . .
The approach is particularly well suited for nonsmooth prob- Consider theboundary eigenproblerfor potential theory de-

lems, providing a unified treatment of such problems. A boundaz‘gEd as follows: Find the nonzero functiansuch that in the

value problem is considered nonsmooth if the boundary of tfomainVy

domain is nonsmooth or mixed boundary conditions are specified. v2u=0 (2.1a)

In these cases, the solution is nonanalytic at some points on the

boundary. Thus, the characteristic feature of these nonsmo@fid on the boundarg

boundary value problems is the presence of singularities in the g=A\gu (2.1b)

flux or higher order derivatives on the boundary. Since most of the ] ) N )

mathematical problems posed in engineering mechanics invokygere the parametex is an eigenvalue. Additionally, theeight

either nonsmooth geometries or mixed boundary conditions, i#ction ¢ is integrable orf§ but does not change sign. For sim-

attempt to provide a unified treatment that encompasses th@4gity, we takeq to be always positive o Note that this per-

nonsmooth problems. mits ¢ to be discontinuous or even singular at some pofins,
Although the theory is applicable to a wide range of problemgiecewise continuodsHowever, from thundamental boundary

we explore this idea within the context of potential theory. Thu§ondition(2.1b), we note that novg is always continuous on the

we are interested in the solution of the Laplace equaWidn Poundary wheneves is continuous, even if there are geometri-

=0 in domainV, subject to boundary conditions & The do- Cally nonsmooth pointée.g., edges, corners .

mainV can be two or three-dimensional, simply or multiply con- With the classical approach, the eigenparameter is introduced

nected. The boundar$ is a contour or set of contours in two-into the governing dlfferentlgll equation and a specific set of ho-

mogeneous boundary conditions are prescribed. However, in the

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF boundar.y elgenprOblem'l).’ the dlffere.ntlal operator remains I.n._

MECHANICAL ENGINEERS for publication in the ASME GURNAL OF AppLiED  tact, while the eigenvalue is inserted into the boundary condition.

MECHANICS. Manuscript received by the ASME Applied Mechanics Division, JulyThis subtle difference has significant consequences. For example,

19, 1999; final revision, July 7, 2000. Associate Editor: B. Moran. Discussion on thge eigenfunctions associated W(Q-,]_) are indeed harmonic i,

paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departme f : ; ; ; ;
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and erll?ﬁhke the classical eigenfunctions which are actually solutions to

be accepted until four months after final publication of the paper itself in the ASM& corresponding HelthItZ problem. Furthermore, the i.nﬁnite se-
JOURNAL OF APPLIED MECHANICS. quence of eigenfunctions f@2.1) can be used as a basis for all
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solutions to boundary value problems in domsirgoverned by Using the fundamental boundary conditions
the Laplace equation with arbitrary well-defined boundary condi- s
tions onS. Ao\ )f Uu,dS=0
Hilbert [ 7] considered the eigenproblef®.1) with ¢=1. Cou- (A2~ Ay s 12 '
rant and Hilber2], in a supplement to their work on vibration ) ) )
and eigenvalue problems, asserted that the properties of the eigdfWwever, since\; and\, are different eigenvalues, we have
solutions are similar to those of other eigenproblems such as )
Sturm-Liouville. It seems, however, that the significance of the f uu,dS=0
boundary eigenproblem in engineering mechanics has not been s

recognized. and item (iii) is isti i i
. . . proved for distinct eigenvalues. Gram-Schmidt
The theory of pseudodifferential operatdesg.,[8,9) is broad orthogonalization can be used for eigenfunctions associated with

fnnotﬁgn}t% erluiomn%as/;iﬁ.rll) isda sfnfﬁ'althca?ﬁt'r 1;jh'Stiprr?V'?lesﬂgh%ondistinct eigenvalues. Additionall§2.3b) is now seen as a spe-
athematical foundation and permits the introduction of a teQry; 556 of orthogonality with respect to the constant eigenfunc-
rem defining the behavior of solutions. tion corresponding ta. =0

THEOREM The t_)oundary eigenproblem defined by (2.1) has the Next we find an expression for the eigenvalueMultiplying
following properties both sides of(2.1b) by u and integrating over the boundary, we

(i) At least one eigensolutiom\(u) exists. obtain
(ii) All of the eigenvalues\ are real.
(i) The infinite sequence of eigenfunctions, for n qudS
=1,2,... areboundary orthonormal with respect 0, s
that is A= (2.4)
$pu’dS
Jsd’(x)um(x)un(x)dgx):émn (2.2) S

where s, is the Kronecker delta. If we substituteq=u ;n;, then the numerator can be written

(iv) All nonzero eigenvalues are positive.

(v) The infinite collection of eigenvalues form an increasing fqud&‘,: f u;unds,
sequencer;<\,<...<\,<... such that, become s s
infinite for n—oo.

. . . . Using the divergence theorem
(vi) The system of eigenfunctions is complete.

Proof. It is easy to see that the equipotential solutian qudS':j(UU,i),idV (2.5)
=constant is an eigenfunction corresponding\te 0. By inte- S v
grating both sides of the boundary conditi¢®d.1b) over the

. y . Oﬁ
surface and using Green's first theorem, we have for eacC
eigensolution

fqud8=f (Uujui+uu,;dV.
s v

fquzO (2.3)
S However, sinceu j; =V2u=0, we have

and forA#0
fquds=f u;u;dv
S \%

f ¢udS=0. (2.%)
S and for\ in terms of the eigenfunction, we obtain
If N is a complex number, say=a+ip, u can be complex, say

u=v+iw. It is easily seen that the complex conjugate of the J uiu;dVv
eigensolution, X,u) is also an eigensolution, whede=a—ig v

andu=v —iw. By using the reciprocal theorefreen’s second A= e (2:6)
identity) for u andu, we obtain S¢U das
f (Ug—ugQ)dS=0. For any nonzero eigenvalue, the numerator and denominator of
s (2.6) are both positive. Therefore, the eigenvalue is positive as

specified in item(iv). The properties listed as itentg) and (vi)
can be inferred via analogy with related eigenproblems, such as
the Sturm-Liouville problem. However, rigorous proof is still
_ . needed. Additional mathematical concepts, such as those provided
(?\—N)J $uudS=0. by Hilbert-Schmidt theory, may be appropriate.
s Based upon the characteristics of the boundary eigenproblem,
However, ¢ is positive onS, u is not zero everywhere, and there-we can express the potentialas an infinite series of boundary
fore the surface integral is a positive number. We conclude theigensolutionsi,
N—A=0 and therefore\ is real, as asserted in itefi). If the

Substituting the fundamental boundary conditi@lb) along
with its complex conjugate produces

eigenfunctionu is complex, then its real and imaginary parts are _ A in Vv 27
both eigensolutions. Thus, we may choose to take only real eigen- u nZl nUn N VUS. 2.7)
functions. . . ) . .
Let (\;,u;) and (\,,u,) be two different eigensolutions with Multlplylr!g both §|des with¢u,, whereu,, is aIsp an eigensolu-
N1#\,. By applying the reciprocal theorem for, andu, tion and integrating on the boundary, we obtain
j (U102~ UpQ,)dS=0. j ¢UumdS:E fAn¢unumdS
s s n=1Js
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Due to orthogonality all of the terms are zero, except the oneln the theory above, we considerédo be positive everywhere

corresponding td&\,,. Then on S We should emphasize this property is a necessary condition
for having a complete set of eigenmodes for representing all given

j¢UUmdS:AmJ puzds potential problems. If insteae is only non-negative on some
s s parts of the boundary, then the eigenmodes follow all of the pre-

viously mentioned properties, but are complete for representing
only those problems for whicg=0 on segments corresponding
to zero values ofp.

and the coefficienf\,, can be written

f $uu,dS
S
=— (2.8)

J'¢u§1ds 3 Integral Equation Method
S

As is well known, every boundary value problem can be trans-
The A, represent generalized Fourier coefficients and are heftgmed into an integral equation. For the direct integral equation
called the fundamental coefficients. If the eigenfunctions are anethod
thonormal, then obviously

Am

c(dHu()+ LF(X.E)U(X)dS(X) = LG(X,S)Q(X)dS(X)
(3.1)

As mentioned previously, the potentialis assumed continu- where kernelG(x, &) is the potential at poing generated by a unit
ous. Consequently, the fundamental expansion converges wuurce at boundary point Thus,
formly to u in the domainV and boundaryS. In the potential
problem,u is analytic in the domaiV. Thus, the firs{and higher

A= f ¢uu,dS. (2.9)
s

1 1 . .
—In— in two dimensions
r

ordep derivatives ofu converge uniformly in the domaiW. On 2
the other handy is not necessarily analytic on the bound&y G(x,6)= 1

However, the completeness of the set of boundary eigenfunc- _ in three dimensions
tions enables the representation of any mean square integrable 4arr

functionw defined onS (i.e., [spw*dS<c) as an infinite series \yperer js the distance between pointand & Meanwhile
ScaU, Wherec,= [spwu,dS. The series converges in the mean

tow on S The value of the series 18, wherevew is continuous. JG(X,€)
Otherwise, the series converges to the principal mean gle F(x,§)= an(x)
Therefore, the infinite series {2.7) converges in the mean to
on S. Now what can be said concerning the fundamental expalRer boundary poing, the integral on the left-hand side (8.1) is

sion of q? We write

au Zou,
gq= ﬁ_Xini_nZl Anﬁ_Xi n;. (2.10)
However,
Jup,
qn:or,_xini:)\nd’un-
Then
q=¢2, A\nU, on S. (2.11)
n=1
Next we can define theveighted flux ¢, where
q=¢9". (2.12)
Therefore,
q®=>, AU, onS. (2.13)
n=1

If the functionq? is piecewise continuous on the bound&nhen

considered as a Cauchy principal valueg i§ on a smooth bound-
ary, thenc(&)=1/2. In the more general case, including geometri-
cally nonsmooth points

c(§)=— LF(X,f)dS(X)-

By substituting the fundamental boundary conditi@rilb) into
(3.1), we obtain the boundary eigenproblem in integral form

c(HHu(d+ LF(X,S)U(X)O'S(X): A LG(X,f)qﬁ(X)U(X)dS(X)-
(3.2)

This is an integral representation (#.1). The solution 0f(3.2)
has all of the characteristics defined in Section 2. The eigensolu-
tions of (3.2) are real, with non-negative eigenvalues and bound-
ary orthogonal eigenfunctions. Consequently, the spectrum of the
direct integral equation representation of the potential problem is
real for every positive, integrable boundary weight functign
and the eigenfunctions form an orthogonal set. It seems that a
spectrum analysis of the direct integral equation has not appeared
before in the literature.

We should not forget that the direct integral equati{8rl) is

the fundamental expansi¢@.13 converges in the mean. Besidesgerived from the reciprocal theorem between the singular funda-

(2.13 converges uniformly ta® in every closed set ofs con-

mental solution and the potential Recall that the reciprocal

taining no discontinuity. Conversely, théth partial sum of the theorem also played a key role in the theory of boundary eigen-

fundamental expansion of*

N
q%=>, As\nl, ON S (2.14)
n=1

cannot approach the functiar?(x) uniformly over any set con-
taining a point or line of discontinuity off?. If q% is piecewise
regular, then this is a generalized form of Gibbs’ phenomenon.

solutions.
Furthermore, we can introduce tlveeighted flux ﬁ where
q(x)= ¢(x)q?(x). Then,(3.1) can be rewritten

c(éu(é)+ JSF(Xyi)U(X)dS(XF JSG(X,f)qﬁ(X)qd’(X)dS(X)-
(3.3)

Further ideas concerning convergence behavior are discussednimonsmooth problems involving flux singularities, the weight

Hadjesfandiar{6].

Journal of Applied Mechanics

function ¢(x) can be chosen to capture the asymptotic behavior

JANUARY 2001, Vol. 68 / 103



of the flux near the singular point. The integral equati®:3) then and
involves only bounded solution variablegx) and q#(x). In _
b . . . g=A¢u on S

other wordsq? is a piecewise regular function.

In a practical sense for engineering applications, we may widiherefore, every eigenfunction of the boundary eigenproblem
to solve discretized versions (8.2) and(3.3) by using the bound- (2.1) extremizes the Rayleigh quotief#.1), and the value of this
ary element methode.qg.,[10]). Numerical solution of(3.2) al- quotient equals the eigenvalue corresponding to the specified
lows us to study the character of the discretized integral equatieigenfunction.
representation of the potential problem, while the computational Variational methods can, of course, be used to formulate finite
algorithms associated wiil3.3) permit the direct solution of non- element methodse.g., Bathe[12]). In Hadjesfandiari and Dar-
smooth boundary value problems. Numerical examples of this lash[11] a discretized version d#.1) is used to develop a finite
ter approach are included in Section 7. Further details concernigigment formulation for the boundary eigenproblem. Furthermore,
the boundary element formulations and implementations are ptbe above variational framework leads to the development of a
vided in Hadjesfandiari and Dargugh1]. flux-oriented finite element method that has some distinct advan-
tages over existing approaches for the solution of general smooth
and nonsmooth boundary value problems. Details of this finite
element formulation and the associated numerical implementation
are also presented in Hadjesfandiari and Dardadh

4 Variational Method
Consider the functional[u] defined as follows:

5 Boundary Eigensolutions as Basis for Boundary
(4.1) Value Problems

j u;u;dv
\Y
J $uzdsS As noted previously, the boundary eigensolutions can be used
S as a basis for solutions to general boundary value problems
This is the Rayleigh quotient associated with the eigenproblef§VPs in potential theory. The three primary boundary value
(2.1). We can see froni2.6) that for any boundary eigensolution,Problem types(Dirichlet, Neumann, and mixedare considered
say (\,,U,), the functionah[u,]=\,. Furthermore, it is easy to Pelow. In all cases, the potentialand normal fluxg are defined
show that the Rayleigh quotient is extremum for boundary eigeRY the serie€2.7) and(2.11), respectively.
functions. Taking the first variation off u] from (4.1), we obtain Dirichlet Problem. Assume the value afi is prescribed ev-
Ju  du Ju du erywhere on the boundary such that f(x) on S wheref(x) is
J — 5—dVJ dbuzdeZJ — —dvf $pusudS an integrable continuous function. Usif@9), we obtain the fun-
vOXi 9% s voXi X s damental coefficients as

Nul=

2
ON=

f PuldS?
s

Substituting(4.1) again produces

An= j $fu,dS (5.1)
s

assuming orthonormalized eigensolutions.

Ju _du d ds Neumann Problem. Assume the value df is prescribed ev-
vt?_Xi 53_)(i V=2 S¢U5u erywhere on the boundary such thigt g(x) on S, whereg(x) is
SN=2 a piecewise continuous function satisfying the Gauss condition
j $u?dS
s g(x)dS=0. (5.2)
or °
9 [ ou Multiplying both sid_es of(2.11) with u,, and integrating over the
f—(—au)dv—f Vzuﬁudv—)\f¢u5uds boundary, we obtain
vOXi | 9Xi v s "
LdmzdS Lgumd8= nzl )\nLAn¢UnUmd3

Then using the divergence theorem

au
j—&uds—f Vzuéudv—)\f¢u5ud8
B sdn v s

f $u?dS
s

or

f(q—)\dbu)éudS—J VeusudV
s v

ON=2
fd)uzdS
s

All of the terms on the right-hand side except the one involving
A, are zero. Therefore

fgumds=)\mAmJ puzds
S S
and the fundamental coefficients become

1
An=— 1 gu,dS for m#1 (5.3)
)\m S

assuming orthonormalized eigensolutions. The coefficient
corresponding to\;=0, is undetermined due to the character of
the Neumann potential problem.

Mixed Problem. In this case, the value df is specified on

Now éu is an arbitrary variation in the domain and on the boundsome portion of the boundary and the valueudf specified on

ary. For an extremum af[u]

S\=0, (4.2)

and we must have
V2u=0 inV
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the rest of the boundary. In Section 2, we classified this problem
as nonsmooth, along with general problems involving corners,
notches, and cracks. The common feature of all of these problems
is singularity of the solution. Most practical engineering problems
are of this type. We may still use the relationships inherent in
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(5.1 and (5.3, but we cannot obtain an uncoupled closed-fordomain 0< #<« and introduce a variable weight functief>0
solution for the fundamental coefficients. This case is related to provide a means for obtaining closed-form expressions for the
methods such as dual series equations for bounded domains eigénsolutions.

dual integral equations for unbounded domgjis]), the Hilbert Consider the analytic functiof(z) given by the following:
problem ([14]), and the Wiener-Hopf techniqugl5]). We can, -

however, obtain a numerical solution of mixed problems. This is f(z)=¢€'

addressed more fully in Hadjesfandiari and Darg{shl where \herek is an arbitrary real number. Alternatively, this can be
new boundary element and finite element formulations a{gitten in terms of polar coordinates as

introduced. )
—krme

f(z)=e simola)] cog kr ™ coq w6l o))
+i sin(kr™® cog w6l a))]. (6.4)

6 Some Boundary Eigensolutions in Closed Form N _
) Y Eg ) Both the real and imaginary parts 6tz) satisfy the boundary
In order to obtain a better understanding of the nature of thggenproblem with weight function

boundary eigensolutions, some problems are now solved in close
form. These solutions will be needed subsequently for compara-
tive purposes when studying the performance of boundary ele-
ment and finite element methods. Solutions of the boundary eigen- . L
problem with=1 are developed for the circle in the following /e demonstrate this for the real part which is renamadhere
subsection. Afterward, boundary eigensolutions, involving singu- sin( w0l a) la
lar weight functions, are presented for an infinite wedge and for a cogkr™* cod w6/ a))

circle with a notch. Additional closed-form boundary eigensoluwith corresponding flux

tions for an annulus and a sphere are provided in Hadjesfandiari 1

[6] along with an application to conformal mapping. Q(FF %= _ Zr(w/a)*lefkr”’“ sin(méla) cog k™ cog 6l a) ).

v
— _ p(7la)—-1
p=—r . (6.5)

el
u=e K

Circle. We first consider a circle with radius By using the o
separation of variables method, the potential may be written By noticing that

polar coordinates as { —q, at 6=0
- T+ at 9=
U=Ag+ D [A,cosnd)+B,sinng)]r". 6.1) o “ o
n=1 we see that the fundamental boundary conditien\ ¢u is satis-

i 8’ on the boundary, if the weight function is given (&5 and
€ eigenvalues ame=Kk. A similar proof can be obtained for the
imaginary part.

Every term satisfies our boundary eigenproblem, as demonstrat
below. On the circlelu/an=du/dr. Therefore,

ou & For the infinite wedge, the spectrum is continuous and the po-
- = E n[A,cogné)+B,sin(ne)Jr" 1. tential can be represented in terms of boundary eigenfunctions as
n=1
It is obvious thatA, is the eigenfunction corresponding xe=0. U=f udk (6.6)
For each additional term, we chegk=\u on the boundary of the 0
circler=a. For each value of with
n[A,cogné)+B, sin(ne)]anfl U= efkr”/” Sin(#gla)[A(k)COikrﬁIa cog 7ol a))
=A[Aqcogn)+B, sin(nd)]a” +B(k)sin(kr™* cog w0/ a))]. (6.7)
and the boundary eigenvalues are easily established as Once again with increasing, these eigenfunctions decay more
n rapidly toward the interior of the domain.
An=— wheren=12,.... (6.2) It is interesting to note that forw=7r, the weight function¢
a =1 and the potential becomes analyticMiv S. The solution for
We see that for every eigenvaluk,,, there are two different U then reduces to that for a semi-infinite domain. On the other
eigenfunctions hand, fora>, the weight functiong and the boundary flux
are singular, in agreement with the singularity present at notches
uM=r"cogne), (6.3) and cracks. However, the weighted boundary ffs whereq
@D = ¢q®, remains bounded and continuous.
uy”’=r"sin(no). (6.30)

. . . . . ) Circle With Notch (Finite Wedge). For the previous two
The C|rcle_|s_a_speC|aI case in which a_1|| of the nonzero elgenvalq@;@amme& boundary eigensolutions were derived with a positive
have multiplicity two. The orthogonality and completeness of thigeight function everywhere on the boundary. Here we examine a
set of eigenfunctions is well established. We are most interestediiiite wedge occupying the domain<¥< a andr <a. We intro-
the property of boundary orthogonality, which in this case is alsq,ce ¢=1/a on the circular arc angs=0 on the two sides cor-

satisfied. ) ) ) responding to#=0 and #=«, as shown in Fig. 1. Thus, the
All Of the elgenfunct|0ns, excemto, OSC”Iate a|0ng the clircum- eigenfunctions must be Compatib|e Wmh:O on the sidesl
ference and decay to zero at the center.rAsicreases, the, Clearly the constant eigenfunctian,=1 with eigenvalue\,

oscillate and decay more rapidly. Thus, for largehe response is —q satisfies the boundary eigenproblem. Now consider the har-
essentially confined to the near surface region. Notice also thakibnic functions

the weight function is instead selected¢s 1/a, then the bound-

ary eigenvalues are simply the integers. nm

up,=Re{z"™ @} =7l 005(7 0) for n=1,2,...

Infinite Wedge. In the first example, closed-form solutions 6.8
were obtained for the boundary eigenproblem with constant (6.8)

Here we examine the problem of an infinite wedge occupying théth gradient
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Table 1 Circle with notch

a ay ap K
Case (deg (deg (deg fe(0) Kyge Exact

Crack 360 67.5 1125 0.351 0.880 0.881
Reentrant corner 270 22.5 67.5 0.571 1.43 1.43

Notice that the Gauss condition for equilibrium of fl@%.2) is
Fig. 1 Circle with notch—boundary eigenproblem definition satisfied.

Based on the theory of fundamental boundary eigenexpansion

q zl%z_n_’n-r(nﬂla_l)sin n_qTH u:E Anun (71)
nr 96 o 1% n=0
- na nar whereu,, are given by(6.8). From Section 5, the coefficients are
Qp=— = —r(n7a=1) cos(— 9) . established as
ar a a
Notice thatg=—q,,=0 on =0 and thatg=q,,=0 on §=«. LqundS

On the circular are =a, we have or n=12,.... (7.2)

A=———
xnf pu2ds
S

Due to the character of the Neumann problem, the coeffidignt
is undetermined. After carrying out the integrations(t?2), we

have
) n’7Ta2 ) nwal
SIn —Sin
o

a

nm ( nm
(nmla—1)
= =—a cog —46|.
q qrn )

Consequently, thai, defined in(6.8) are boundary eigenfunc-
tions, with the corresponding eigenvalues given as

n
)\n:—w for n=12,.... (6.9) A 4qoa

o

n=— n2m2gan a1
We should emphasize that far> 7, the gradients are singular at

the tip of the notch for the first mode=1. Furthermore, in this for n=135... (7.3)
special example, the eigensolutions are exactly those that we ¢ahe A,=0 forn=24, ..

. ) X . due to thentisymmetric boundary
derive from a local analysis about the notch tip. conditions. Thus

7 Application of Theory to Nonsmooth Boundary
Value Problems

In this section, we consider the application of the theory of

0 - nmo
+ > Anr””’“cos(T) (7.4)

a
u=Ag+Ar7e cos(—
a n=35

boundary eigensolutions to two nonsmooth potential problems, _ ZA rla=1gin mo _ nT’A pnla=1 iy nmé
The first example utilizes the boundary eigensolutions just ob- a a =35 «
tained to solve a boundary value problem for the circle with a (7.5)

eigensolutions. Results are also obtained numerically using %, &€ Most interested iy, corresponding ta,, = /. In light

boundary element formulation based on the integral equati@htN€ tearing stress intensity factdode Ill) in fracture mechan-
s, we can define a generalized flux intensity factor via the fol-

method of Section 3. A second example is then provided, invoILtF-

notch. The solution is obtained as an infinite series of bounda;%

ing potential flow in a square region with a diamond-shaped c p_wing:
out for which an analytical solution is not possible. Ky = lim V27ri=eq (r, 6= al2).
-0
Circle With Notch. Consider the Neumann problem illus- r

trated in Fig. 2 with the following boundary conditions: Then, for the present problem

+ for a1<6<a T 2 T T

do ! z Ky = \/277—A1:4\/:q0a1’”’“ sin(—z) —sin(—l) .
g={ —qo for a—a,<0<a—a;. a ™ a @
0 elsewhere Now we use a boundary element method, based B, to

determine the generalized flux intensity factor at the notch tip
numerically. Additional details can be found in Hadjesfandi&fi
and Hadjesfandiari and Dargughl]. We model only half of the
body and imposei=0 on the symmetry cut. Furthermore, from
the closed-form eigenfunction, we also chogser ™! along
that symmetry boundary. We consider two specific cases involv-
ing a crack and a reentrant corner. Geometric and loading details
are provided in Table 1. For each case, the model employs 30
quadratic boundary elements on the surface with a very fine mesh
near the singular point.

Results obtained for the weighted flg¢ along the symmetry
cut are shown in Fig. 3 for= 27 (i.e., a crack The oscillations
in g¢ near the tip are the result of nonuniform convergence, and
Fig. 2 Circle with notch—boundary value problem definition thus represent a generalized form of Gibbs’ phenomenon. This is
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Potential BVP

Circle with Notch
BE Results for Crack (a=360°)

0.425 7

0.400 7

0.375 7

o (x)

0.350

0.325 7

r

Fig. 3 Circle with notch—weighted flux versus distance from
crack tip

discussed further in the next example. Here we use an extrapc 1.65
tion procedure to estimate the value of the generalized flux inte

sity factors, where
K||||BE: lim \ 27Tq¢(r)

r—0

A comparison of the boundary element results with the analytic
solution is presented in Table 1 for both the crack and reentre
corner. The errors in the numerical solutions are approximate

0.1 percent.

O
It may seem that in order to solve any nonsmooth problem, v 2
must have the boundary eigensolutions. Fortunately, we only ne“

the asymptotic behavior near the singular point, which can

found from a local analysis. The next example shows this clear

Square With Diamond-Shaped Cutout. We examine the

problem of potential flow in a square region with a diamond

shaped cutout illustrated in Fig. 4. Llet=10,a=1 andb=2. All

—_

e B Ve

Nnnnnn

L T

l

q=0

Fig. 4 Square with a diamond-shaped cutout—problem
definition

Journal of Applied Mechanics

Potential BVP

Diamond-shaped Cutout
B=90°

—6— Point A (BE, coarse mesh)
—3— Point A (BE,refined mesh)

)
q{x,)

(a) Ta

Potential BVP

Diamond-shaped Cutout
p=90°

—+— Point C (BE, coarse mesh)
—— Point C (BE,refined mesh)

(b) Te

Fig. 5 Square with a diamond-shaped cutout—convergence of
weighted flux versus distance from singular point

of the boundary conditions are specified in the diagram. Due to
the nature of the cutout, singularities in flux occur at poAwsD.
Here we focus on the singularities at poidtsand C. We invoke
symmetry conditions about=0 and introduce the following
positive weight function on that boundary:

dp=r)"t for y>a

¢

| pe=rgt for y<-a
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Potential BVP
Diamond-shaped Cutout

—»— Point A (BE-Present)
® Point A (BE-QP)

0.70 T T T T T
a. 30. 60. 90. 120. 150. 180.

B (%)

Fig. 6 Square with a diamond-shaped cutout—generalized
flux intensity factor versus internal cutout angle

with r,=y—a andrc.=—y—a as shown in the figure. From an
analysis of local asymptotic behavior based upon the results
Section 6,y=w/(27— B), whereg is the internal cutout angle.
Then, as in2.12), letq= ¢q®. Althoughq is singular atA andC,
q? remains bounded, and the eigenproblem defineB® has a

be used to extract the generalized flux intensity factors. The latter
approach is adopted to provide the results presented in Fig. 6 for
the coarse boundary element mesh. The quantii®) and
qg’(O) are related to generalized flux intensity factors that quantify
the singularity at point& andC, respectively. Figure 6 illustrates
the variation ofg#(0) with internal cutout angle. In all cases, the
flux q is infinite. However, by introducing the singular functign
smooth variations 0f¢(0) andq&(0) with B are obtained. The
limiting case,8=0 represents a crack. Boundary element results
obtained for this limiting case using quarter-point eleméatg.,
[10]) are also shown in Fig. 6, and indicate very good correlation
with the present approach.

8 Concluding Remarks

In this paper, we have explored the concept of boundary eigen-
solutions to boundary value problems. The resulting theory fur-
nishes new insight into the solutions of BVPs. In addition, we find
that there is a connection among the theory of boundary eigenso-
lutions, integral equation methods and variational methods. In the
domain of computational mechanics, this provides a relationship
between boundary element methods and finite element methods.

Hilbert [7] has mentioned the boundary eigensolutions with
=1 long ago, and has even given their relation with the calculus
of variations. He did not notice the relation with the direct integral
equation. This theory has been further developed here by intro-
ducing a general positive weight functiak which then provides
a unified treatment for nonsmooth problems in engineering me-
chanics and allows for meaningful solutions to be obtained. The
simple numerical examples considered in Section 7, based on a
boundary element formulation, illustrate the attractiveness of this
no?w methodology.
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A State-Space-Based Stress
Analysis of a Multilayered
Spherical Shell With Spherical

W. Q. Chen'
e-mail: caijb@ccea.zju.edu.cn Isotro pv
H. J. Ding
This paper presents an exact static stress analysis of a multilayered elastic spherical shell
Department of Civil Engineering, (hollow sphere) completely based on three-dimensional elasticity for spherical isotropy.
Zhejiang University, Two independent state equations are derived after introducing three displacement func-
Hangzhou 310027, P. R. China tions and two stress functions. In particular, a variable substitution technique is used to
derive the state equations with constant coefficients. Matrix theory is then employed to
obtain the relationships between the state variables at the upper and lower surfaces of
each lamina. By virtue of the continuity conditions between two adjacent layers, a second-
order linear algebraic equation and a fourth-order one about the boundary variables at
the inner and outer surfaces of a multilayered spherical shell are obtained. Numerical
examples are presented to show the effectiveness of the present method.
[DOI: 10.1115/1.1343913
1 Introduction spherical coordinates for spherically isotropic elasticity. However,

Spherical isotropy is a special kind of transverse isotropy tht@%ey completely have overlooked the superiority of the state-
. ; . ace-based method in the analysis of laminated structures and
was introduced in 186.5 by Samt-Ven_ant, who gave an exact ?h)'ey treated the two state equations just as the intermediate equa-
!utlon of a spherically Isotropic spherical shell subje_ctec_i to botyns in simpler forms that were solved by a numerical method.
internal and external _unlform pressurgs,2]). Hu [3] first initi- Tpis paper presents two separated state equations by employing
ated to use a separation method and presented a general theOOlsenaration formulae for displacements and shear stresses. A
elasticity for a spherically isotropic medium. Many subsequentlyariaple substitution method is then employed to transfer the re-
important analyses were inspired by and based on Hu's elegajiing equations to the ones with constant coefficients. By em-
method. For instance, Ch¢d] utilized Hu's method([3]) to in- pjoying the matrix theory and utilizing the continuity conditions at
vestigate some static problems such as a concentrated force irsgfh interface, two relationships are obtained between the bound-
infinite medium, stress concentration due to a spherical cavitywy variables at the inner and outer surfaces of a laminated spheri-
and a steadily rotating shell. Puf6] generalized the separationca| shell. The numbers of the final solving equations correspond-
method to the inhomogeneous case. Shul'ga €itdlconsidered jng to the two separated state equations are only one and two,
the free-vibration problem of a nonhomogeneous spherically isgespectively, for a specified boundary value problem. Numerical
tropic spherical shell. Chd(r] recently extended Hu’s formula to example is given for a three-layered spherical shell subjected to an
consider the toroidal vibration of a spherically isotropic soliéxternal distributed pressure.
sphere. In the monograph of Ding et &8], there is a detailed
description on the coupled vibrations of spherically isotropic hol-
low spheres.

The interest of the study of spherically isotropic materials
comes not only from the academic tradition, but also from the fagt . .
that they have been widely applied in aerospace and many otfier Basic Equations
industries([9,10])). More importantly, the latest investigation of The basic equations of a spherically isotropic elastic body are
geophysics showed that an appropriate model of the Earth showléll described in the monograph of Lekhnitskd] or more re-
be a multilayered spherical shell including layers with sphericgently in the book of Ding et a[8]. For the sake of the followed
isotropy ([11]). Using such a model, Ding et dl12] studied the analysis, we give these equations in this section in a slightly dif-
effect of anisotropy on the tidal stress of the Earth. ferent way. Assuming the center of the spherical isotropy coinci-

The state-space-based meth@iso known as the method of dent with the origin of spherical coordinates ¢, ¢), the linear
initial function) is a powerful tool for solving problems of lami- constitutive relations can be rewritten as follows:
nated structureg13,14)). It can effectively reduce the order of
the final solving matrix and greatly improve the computational — —
precision. It is mentioned here that Shul’'ga et[&l] firstly pre- o0 _w” _CllSMJrCled"/’JFCBS” '

. . R - . E¢¢— r0'¢¢—012599+ Cllsd)¢+ C13Srr y
sented two separated state equations with varying coefficients in
2 =T 0y =C135pp+ C13S44 1 C33Sr » B
1To whom correspondence should be addressed. 2rg=107g=2C4Sry,
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Houston, TX 77204-4792, and will be accepted until four months after final publ_r—elationCll= Cipt 2Ce6 h9|dS for spherical !SOtmp)Sij in Eq. (1)
cation of the paper itself in the ASMEDIRNAL OF APPLIED MECHANICS. is the “generalized strain tensor” determined by
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Uy
S =18, =Vol, ,Spg=rSgp= (9(9+ur

1 Jduy
Spp=IS4p= sne 7% +ur+ugcot0

Jau,
=218 p=—>

254 Y

+V2u9 Uy,

)

au,
2S5, 5=2rS; 4= Slm9(7¢+V2u¢, Uy,

au¢
2S8pp=21Sp4= P (9¢ —t—

—uycot,

whereV,=rdldr, s;; is the strain tensow; (i=r,0,¢) are three

displacement components. The equations of equilibrium in terms
of stresses can easily be transformed into the following forms:

9% gp
a¢ 30
+(2 g~ 44)cC0t0=0,
929y
a6

V,3,p+CscC +23,y

+

9% 4
V3, 4+ Csch P

+2%,cot6=0,

+234 @)

‘92r0

Err 260

2y
rr (9(’5
—E¢¢,+2,gcot0=0.

3 The State-Space-Based Formulations

To eliminate the partial operat®t: contained in Eqs(6) and(7),
it can be assumed for a closed spherical shell

. 2

0

21a(1)S7(0, ),

0

M= ?M=

nZO Un()ST(6, ),
=

m=0

\S

3

Sn(r)SH(6.4),

0

®)
> 35S0, 4),

0 n=0

M=ﬁM:

2 2 Gu(NS(0.9),

0 n=0

=3
8

W, (r)ST( 6, ),

m=0 n=0

-

where ST(6,¢)=PM(cosf)d™ are spherical harmonics and
P.'(x) are the associated Legendre polynomials, amehd m are
integers. From the derivations in the following, it will be shown
that the integem will not appear in the resulting ordinary differ-
ential equations about the unknown functidig,(r) and ¢,(r),

etc., so that we needn’t indicate it in the subscript of these func-
tions in Eq.(8) and hereafter. From Eq&) and(5), it is clear that

S10: Yo, 220, andGy all vanish in the final expressions of dis-
placements and stresses, so that they can be assumed zero. From
Eqgs.(6) and(7), it is obtained that

It is not difficult to establish the corresponding state equation -2 ceel—2)
by directly choosing i, ,u,,u, .2 25,2 ,) as the state vari- Eln 1 20
ables. It has, however, been shown that, by employing certain Un = 1 Un | ©)
separation formulag3,6,15), not only can the basic equations be Cyq
decoupled with order reduced, the subsequent solving procedure - -
also becomes simpler. It is thus assumed that 2p-1 —I —kil — 2k,
B l (9110 (7G B (;w 1 (7(3 4 Ern B - 2 - k2| - 2C66 - kl
Y= " Singap a0° YT a6 sneag W “) ri anl | o L 1 1
dr | G, Cya4
and w, 1
_ 1N 9N, LTS B0 TR o —Al —2p
7 sing ap 90’ " 90 sind dg () s -
wherew, G and ¢ are three displacement functions whilg and E;n
3., are two stress functions. Xy "y (20)
Utilizing Egs. (4) and(5), through some lengthy manipulations, n
one can obtain the following equations from E¢B—(3): Wh
—2 —c(V242) wherel=n(n+1). It can be seen that Eq®) and (10) are two
s, 66t "1 s, separated state equations with varying coefficients.
Vz{ p J =/ 1 { p ] (6) Considering @-ply spherical shell, Fig. 1, for thigh layer, the
:1 1 following variable substitution is taken:
. —aef (i=12--- pO<é<é
23_1 Vi klvi _Zkl r=a;es, (I 1121 !pvo<€<§l)! (11)
2 kV2_2c K where a; and b; are the inner and outer radii of th¢h layer,
S B 2V1™ <Cep 12 respectively, and; = In(b; /a;). Substituting Eq(11) into Eqs.(9)
2 1 2 and(10) gives
v, Gz _ 0 1 1 1 Gz ’ (10 g
Cas d
w 1 w dlem M1niT1i,  (N=1,2,3;+), (12)
— 0 BVi  -2B
Ca3 ] d
) g Tni=ManTani . (N=0,1.2:-), (13)
where V3= %/96%+ cot&(dlaf)+csC fFlad?) is the two-
dimensional Laplacian on a spherical surface and where
ﬁ=013/C33, k1=2013B*(C11+012), k2:k1/27C66. Tlni:[tlnli 1t1n2i]T:[tlnlvtln2];rv
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T2ni(§) =eXpU(M23i) T25i(0), (n=0,1,2,--;0=<é<§),
7)
where the exponential matrices ekpy,;&) and expi,,&) are
known as the transfer matrices, which can be expressed in terms
of polynomials about the matriceéd ,,; andM,,,;, respectively,
through the use of Cayley-Hamilton theoréfi6]).

Settingé=¢; in Egs.(16) and(17) gives

T1i(&)=expM14ié) T1ni(0), (N=1,23;-;i=1,2,---,p),
(18)

Toni(&)=expMni&i)Toni(0), (N=0,1,2;--;i=12,--+,p).
(19)

Fig. 1 The geometry of a p-ply spherical shell . . .
d g y p-pl sp Thus we have established relations between the state variables of

the inner and outer surfaces of tié layer. Further allowing for

the continuity conditions at each interface, we can finally get
Toni=[tonai +tan2i +tonzi s tanai ] =[tan1 ton2 tonz tonal | s

and Tlnp(gp):SlnTlnl(o)1 (n=1,2,3,+), (20)
t1n1=21n/(alcﬁ)), t1n2: lﬂn/al, T2np(§p)=SZnT2n1(0)1 (n:O,l,Z,"'), (21)
where S, =11{_ expM i &) and S,,=I11_ expM,ni&) are

ton=2m/(a1C5),  tona=3on/(a1C%), the second-order and fourth-order square matrices, respectively.

Through these two matrices, the boundary variables at the inner
t,a=G.la;, toa=W./a;, 14 a_nd outer surfaces c_)f_a multilayered spherical shell are connected
23T =0l tand Hn Tl (14) directly. For a specified boundary value problem, one does not

need to solve a second-order and/or a fourth-order algebraic equa-

_ (I__Z)CGG tion as shown by Eq20) and/or Eq(21). For example, when the
cly stresses are specified, i.€3012(0), tinp(€p) and ty;1(0),
Mypi cﬁ ) tonjp(&p) (j=1,2) are known, one can get from EG20) and(21)
ad 1
Caq Sin1at1n21(0) = t1n1p(€p) = Spnartinar(0),  (n=1,23,-),
(22)
i kql 2k, 7
28—-1 — - @ - @ {San?, 32n14Ht2n31(0)} 7{t2n1p(§p)] _{Sanl Szmz}
_ Son2z Senza t2n41(0) t2n2p(£p) Son21 Senzz
e T T ton11(0)
Caa Caa x{ antt } n=0,1,2, -
Mani= @ . (s) tons(0)) 0 (MTOA2):
0 C“_“ 1 1 (23)
@ e where S;,;; and S, are the elements on theh row andjth
Cas 0 — Bl —28 column of the matrice§,;, andS,,, respectively. After the state
c_33 variables of the inner surface are solved, the state variables at any

. ) ) ] interior point can be obtained by using the following formulae:
wherec(}) represents the elastic constant in the first layer. It is

noted here that a nondimensionalization procedure has been used 1
to derive the state Eq$12) and(13). Thus in each lamina, we T10j(8)=Xp(M;é) IT expMuinié)Tin(0),
have established two separated state equations with constant co- i=j-1

efficients in a dimensionless form. The solutions to these two

equations will be presented in the next section. (n=1.2,3;--:0<£<¢)), (24)
1

4 The Solution Method T (&) Mo £) H Mo &) Tons(0)
(&)=ex - ex i€ ,
Utilizing the matrix theory, solutions to Eqél2) and (13) are zni(€ P(Mz0; i=j-1 P(M 20idi) Tna

Tini(H)= XA M) T1i(0),  (n=1.2,3;+;0<¢<£), (1=01,2;+;0=£=4y). (25)
(16) The induced variable® 4, 2,4, andX ,, are determined by

2 9°G el azw
2 59— 2 4= 2Ceg VlG_2(9_02+2 cotecsceﬁ—z cscem ,
S0t S gp=2B3 +k VIG—2kyW, _ (26)

S 6= —Cegl Viy—2 6’21//72 cotd cscﬁ§+2 csch S
o¢ 66| '1 962 ad 909¢
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5 Numerical Examples the whole outer surface will undergo a uniform pressure, while for
k—wo, the spherical shell will be subjected to a couple of concen-
Consider a three-layered spherical shell subjected to distributgated forces applied at the two poles. Because the problem con-
uniform pressure) over the ranges € <6, and 7— §,<6d<7 sidered is axisymmetric for which one has=0 in Eq. (8), the
at the outer surface=b (see Fig. 2 From Fig. 2, one haa distributed pressure can be expanded in the form of
=a,, b=b;, andh=b/k=(1—coséy)b. Obviously whenk=1, =_,a,P,(cosd), where the coefficienta, are given by

ﬂ, n= 0’
m

= 27
“n . m—1 m-1\]q 27)

[1_(_1) ] Pnfl m _Pn+1 m 51 n>0

[
Figures 3 and 4 display the distributions of the nondimensional E

stress o, /q and the nondimensional radial displacement (28)

Cas= C%:M'
=c£§3w/(bq) for a spherical shell subjected to external uniform

pressurek=1). The following three cases are consider@dlthe WhereE_ and v are the Young’'s modulus and the Poisson ratio,
three layers are of the same isotropic matef@lithe three layers respectively.
are of the same anisotropic material; a¢® the inner and the ~ Throughout the calculation, we shall take
outer layers are anisotropic and the intermediate one is isotropic. , _ ,_ —h - —ho— _
The elastic constants of the two materials are listed in Table 1, 21 & 0.5, 8,=b,=0.1, 2;=b,=0.80, bs=b.
where for the isotropic material, the elastic constants, are The problem of a homogeneous spherical shell subjected to uni-
determined by form internal and external pressures is spherically symmetric to
which the solution has been given by Saint-Ven@{2]). Our

= Cane E(1-v) o Cone Ev results of casegl) and(2) are found identical to Saint-Venant's
WM 1+ p)(1-2v)" BT A+ w)(1-2v)° solution.

It can be seen from Fig. 3 that, though the difference between
the normal stresses of cas@s and (2) is very small(for other
materials, the difference may become obvijous the case of a
laminate, i.e., for casé€3), the distribution of the normal stress
changes greatly. Not only the stress gradient has a sudden change
at the interface, the stress level is also raised. Such a fact is not a
good thing to the engineering design. However, Fig. 4 shows that

&
4 014 F h
—6— istropic
Fig. 2 A three-layered spherical shell under distributed pres- ‘ —A— anisotropic
sures -0.16 —3— 3-layered

0 ra
[ —6— istropic
3 —— anisotropic
02 ~—&— 3-layered
0.4 . )
05 055 06 065 07 075 08 08 09 095 1
& r/b
R 06
o . o ; . I
Fig. 4 Distribution of the nondimensional radial displacement
0.8 a,=cHwi/(bq) in the radial direction (k=1)
- Table 1 Elastic constants
- ) ) ) ; ‘ ‘ ‘ ‘ isotropic material E=20.7x10" Pa, v =0.29
-12 - - L
05 055 06 065 07 075 08 08 09 095 1 ¢, =5.97x10" Pa, ¢, =2.62x10" Pa,
/b
’ spherically isotropic material €, =2.17x10" Pa, ¢;; =6.17x10" Pa,
Fig. 3 Distribution of the nondimensional radial stress o, lq ¢y =1.64x10" Pa

in the radial direction (k=1)
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Fig. 7 Distribution of o,/qg in the circumferential direction
(k=4, r=0.7b)

o99/q and oy, /q when 6= /6. It can be seen that for a multi-
utilizing the laminate structures, one can improve the antiayered spherical shell, bott,, and o, have a sudden jump
deformation ability of the spherical shell effectively. Thus in pracacross the material interface.
tice, a proper design should be made based on a thorough evaluAs mentioned earlier, wheki— o, one will obtain the solution
ation of relative factors as mentioned above. to the problem of a spherical shell subjected to a couple of bal-

In the case of nonuniform pressure, ile# 1, we takek=4 in anced concentrated forces applied at two poles. Table 2 shows
the numerical calculation. Figures 5 and 6 give the radial distsuch a procedure, whege=P/(27b?)=2xwbhg/(27b?)=qgh/b
butions ofo,, /q andu, when #=x/6. Figures 7 and 8 give the =q/k, andP is the radial resultant of the unilateral distributed
circumferential distributions ofr,, /q andu, at the interfacer  pressure. It can be seen that the solution for a distributed pressure
=a,=0.7b. Figures 9 and 10 display the radial distributions obver a very small spherical surfack=1024) agrees well with
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Table 2 The variations of o, /p and c{Yw/(bp) with the pa- The present state-space-based method is superior to other con-

rameter k for 6=m/2 ventional solution methods. Numerical examples show that, espe-
Talcoodime T 033 07h 0%E cially for a spherical shell with many layers, the method can
- e ; o ; s greatly reduce the computing time. Since it is completely based on
£ms ; . . .. . . .
' canwltep) |0,/ | ewwlbp) |0, P e 0P three-dimensional elasticity for spherical isotropy, it can be a
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Large Deformations of a Rotating
c.0.horgan | Solid Cylinder for Non-Gaussian
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s | Hyperelastic Materials

G. Saccomandi The purpose of this research is to investigate the steady rotation of a solid cylinder for a
Dipartimento di Ingegneria dell'Innovazione, class of strain-energy densities that are able to describe hardening phenomena in rubber.
Universita degli Studi di Lecce, It is well known that use of the classic neo-Hookean strain energy gives rigeysically
73100 Lecce, Italy unrealisticresponse in this problem. In particular, solutions exist only for a sufficiently
e-mail: giuseppe.saccomandi@unile.it small angular velocity. As the velocity approaches this limiting value, the analysis pre-

dicts that the rotating cylinder collapses to a disk. It is shown here that this nonphysical
behavior does not occur when generalized neo-Hookean models, which exhibit hardening
at large deformations, are used.DOI: 10.1115/1.1349418

1 Introduction From the phenomenological point of view the non-Gaussian mod-

. . . els can be divided into two classes: models with limiting chain
Usually elastomeric materials are conveniently represented i 9

A . . : extensibility and strain-hardening models.
]Eerms of a strain-energy density functivh _Th_us, given an unde- The simplest example of the first class is the model due to Gent
ormed reference state, the state of strain is characterized by EEfwho proposed the strain-energy density
principal stretches\i,\,,\3 of the deformation or equivalently
by introducing a strain measure such as the left Cauchy-Green o 1—3
tensorB=FF', whereF is the gradient of the deformation. For an Wi==75Jm In( 1-5 ) ' Q)
isotropic materialW is a function of the strain invariants m

whereu is the shear modulus ardg, is the constant limiting value
I,=trB, I,=trB, I;=detB. (1) forl,;—3, taking into account limiting polymeric chain extensibil-
ity. The response of this material in simple extension is described
Rubber can be considered to behave in an incompressible marinef2]. This strain-energy density gives theoretical predictions
as long as the hydrostatic stress does not become too large. Thirilar to the more complicated Arruda and Boyce eight chain
it is common to adopt the assumption of incompressibility so thaiodel ((3]). Note that from the strain-energy) we recover the
the admissible deformations must be isochoric, i.e.Fdel so neo-Hookean model on taking the limit dg—o. For further

thatl;=1. _ _ N o discussion of4) and related constitutive models, 4de-6] where
The basic strain-energy densities for rubber elasticity are telutions to the torsion, axial shear and circular shear problems
neo-Hookean strain-energy have been obtained.
An example of the second class is the power-law material first
M roposed by Knowles ifi7] in the context of anti-plane shear
w="41,-3), (2 Proposedty riin e conentorante
o
. P W=—||1+=(I,—3)| —1], 5
whereu is the constant shear modulus for infinitesimal deforma- 2b n( 1 )) ©)
tions and the Mooney-Rivlin strain-energy where u is the shear modulus, aridandn are positive material
constants. When=1 in (5) we recover the neo-Hookean model.
W= 2113 3)+ piol1,- 3), 3) ©)

It was shown by Knowle§7] that the material modeled W%) is

whereu, and i, are constant parameters. The theoretical predif@rdeningin simple shear ifn>1. A similar model to(5) has
tions based on these strain-energy density functions do not &§€n derived by Erman and MafB] in the framework of the
equately describe experimental data especially at high valueshaplecular theory of elasticity using a generalized Fixman-Alben
strain. For example, the strain energies2nand (3) are not able d!strlbutlon for the .entho-end Igngth of the molecular qhalns. The
to describe the characterist&shaped load versus stretch curvdixman-Alben distribution function also models hardening at high
exhibited in simple tension experiments. strains without considering limiting chain extensibility.

To model the typical hardening at large deformations, a number ' he aim of this paper is to consider the deformation of a steady
of alternative models have been proposed. In the molecular theb@{ating solid cylinder of radiu\ for the materials(4) and (5).
of elasticity (see, e.g.[1]) these models are usually called nonJ e rotating cyI!nder problem is investigated in an |ntergstlng
Gaussian, because they introduce a distribution function for tR&Per by Chadwick et dl9] (see also the bodK.0]). As shown in
end-to-end distance of the polymeric chain which is not Gaussiaf;10] and discussed briefly below in Section 2, the neo-Hookean

model (2) gives rise tophysically unrealisticresponse in this

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF problem. In partICUIar‘ SOluuon.S exist only for a s_uff_|C|_e'ntIy small
MECHANICAL ENGINEERS for publication in the ASME OURNAL OF AppLiED ~angular velocity. As the velocity approaches this limiting value,
MECHANICS. Manuscript received and accepted by the ASME Applied Mechanidhe analysis predicts that the rotating cylinder collapses to a disk.
Division, June 8, 2000. Associate Editor: L. T. Wheeler. Discussion on the papgyyr purpose here is to show that this nonphysical behavior does

should be addressed to the Editor, Professor Lewis T. Wheeler, Department of N _ :
chanical Engineering, University of Houston, Houston, TX 77204-4792, and will t';é%t occur when the non-Gaussian mOdQS and (5) are used. It

accepted until four months after final publication of the paper itself in the asmshould be noted that the nonphySical pr.ediCtionS of the neo-
JOURNAL OF APPLIED MECHANICS. Hookean model may be also avoided on using the Mooney-Rivlin
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strain-energy(3). However, our goal here is to demonstrate the
advantages of using generalized neo-Hookean models With

=W(l;) which exhibit material hardening at large
deformations. ~M(\)/u

15
2 Steady Rotation of a Solid Circular Cylinder L
We consider the steady rotati¢at constant angular velociwy

about its central axjs of a solid circular cylinder, of radiuA in o3 A \

the reference configuration, composed of a homogeneous incorr % = 53 o7 E 5B :
pressible isotropic hyperelatic material. The lateral surface of the i : - ‘ A
cylinder is traction-free and the cylinder is assumed sufficiently

long so that end effects are ignored. Thus the traction-free bourfdg. 1 Plot of —M(X\)/p versus \ for the neo-Hookean and
ary conditions at the ends are to be satisfied globally rather thgAnt material. The curve for the Gent material has the vertical
pointwise. This problem has been formulated and extensively i€ as an asymptote as A—X,.

vestigated by Chadwick et al{[9]) where references to earlier

work may be found.

The kinematics of the deformation is described by A P on"14)\2-3
R W) == JnIn| 1- 3 (13)
==, =0+ owt, z=\Z, (6) ) ) . m ]
A The second and third of the inequalities(8) now show that is
where the material and spatial cylindrical polar coordinates af@stricted to the range
denoted by R,0,Z) and (,6,z). Here\ andw are positive con- Ao<a=<1 (14)
stants and denotes the time. In this case the principal stretches ) me ' _
are given by where\,, is the smallest positive root of the cubic
AN=A"Y20 =N = (7) A= (3+ I\ +2=0. (15)

and, as shown 9], the balance equations reduce to the scaldihis root is given by

equation _2\/%T3 _
p Am= Tsm

1l [ 3
§arCSI m

i . ()
MM =AW/ (\)=— = w?A?, (8)
4 As J,—0 we havex,— 1, whereas fod,,>0 we havex ,<1.

whereW’ (\)=dW/d\ andW(\)=W(\~Y2\"12)). Equation(8) now reads

For thestatic problem of a circular shaft under axial loading, as M(\) Ne—1 o
is discussed by Ogde(p10], p. 305, Haughton and Ogdeti11] = = =— — w?A% (17)
p. 253, one would expeatxtensiorof the shaft to occur when the K 1— 2N A3 4p
loading istensilewhile contractionshould occur when the loading N

is compressiveThus the strain-energy densivAy()\) is assumed

to satisfy the constitutive assumptions In Fig. 1, we have plotted-M(\)/u versus\ for the neo-

Hookean material and for the Gent material. The valye 97.2

>0 if A>1, is chosen since this is the value obtained by Gent from fitting with
< . uniaxial data([2]). Thus\;,,=0.01996.
W' (N =0 if A=l © The contrasting behavior predicted by the two material models
<0 if A<1. is evident from Fig. 1. For the Gent material, a unique solution

. 2 . . i
By virtue of (8), we see that the latter inequality holds for theexIStS for allo®. Furthermore, sinck>\r, the nonphysical pre

; - . diction of collapse to a disk is now eliminated.
rotating shaft wherw# 0. Thus, as pointed out i110,11])) rota- ) -
tion is accompanied bghorteningof the cylinder. For the power-law materidb) we have
For example, for the neo-Hookean matefial we have

- o b n
W(x)=% 1+ﬁ(2>\ 1HN2=-3)| —1]|. (18)
An) = K ox 12
WL 2 (2h7+A7=3) (10) In contrast with the situation for the Gent material, the constitu-
tive inequalities(9) do not impose any minimum allowable value
so that . .
of A in this case.
M(N)=u(N\3~1). (11)  Equation(8) reads
Thus from(8) one obtains\ in terms ofw as M(\ b[/2 n-1
@ (—)s( - —+x2—3)) (N3—1)=— — w?A2,
w2\ 13 o nia 4u
A={1-—] , (12) (19)
@

There are now several possibilities. Consider, for example, the
where w§=4u/pA?. As was pointed out ifi9], sincex>0, the casesn=23/2 andn= 1/4, respectively, and for simplicity we take
solution(12) is meaningful only foro<w,. The features of this b=1. The results are plotted in Fig. 2. For=3/2 (solid curve,
simple solution are physically unrealistic because it implies thgie behavior is similar to that predicted by the Gent material in
the cylinder collapses to a digke., A —0) for a finite value of the Fig. 1. Forn=1/4 (dashed curvg the behavior is quite different.
angular velocity. Moreover it is not clear why solutions should not The response depicted in Fig. 2 is typical of that exhibited for
exist for all possible values of the velocity. Thus, the predictionglues ofn>1 andn<1, respectively. We see frod9) that
of the neo-Hookean model are not physically realistic for this
problem. M(1) _

For the Gent materiald), one finds that B % 0 (20)
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holds. This result is valid for all incompressible isotropic hyper-
elastic materials.

The stresses induced in rotating cylinders within the theory of
linearized elasticity are well knowfsee, e.g.[12], pp. 384—38%h
For anincompressibldinearly elastic solid, these stresses can be
obtained on setting Poisson’s ratie= 1/2. Alternatively, they can
be found from(22), (23) on setting\ = 1.

4 Concluding Remarks

The preceding results have been obtained under the assump-
tions (6) that the radial deformation depends only on the radial
coordinate. The possibility of bifurcation from such a configura-
tion has been investigated [A1] and illustrated for the Ogden

0.8 1. A

0 0.2

Fig. 2 Plot of —M(A)/p versus A for the power-law material
n=23/2 (solid curve ) and n=1/4 (dashed curve ). The solid curve

has the vertical axis as an asymptote as =~ A—0. strain-energy density. We shall not pursue such considerations

here. One of the advantages of the rotating cylinder problem is

that it may provide a means of obtaining experimental data in

and compression while avoiding common instabilities such as buck-
+oo if n>1, ling. Such data is usually difficult to obtaifsee, e.g.[13] for

) M(X\) ) recent resulis Thus, as we have suggested in the context of tor-
lim (— —) =41 if n=1, (21)  sion([4]), axial sheai[5]), and azimuthal shedf6)), it is hoped

A—0" ® 0 if n<i. that the present results may help to provide guidelines for future

) ) ) . . experimental work on large deformations of rubber-like materials.
Consider first the case offeardeningmaterial for whichn>1. It

can be shown fronil9) that —M (\)/« is monotone increasing in
\ for 0<\ <1, and so, corresponding to a giventhere exists a Acknowledgments
uniqueX. As w— in (19), we see fron(21) thatA —0* so that
infinite velocity is required to shorten the cylinder to a disk. Th
results forn>1 are similar to those obtained i®] for the
Mooney-Rivlin material(3). For asofteningmaterial (<1) the
M(N)/u versusi curve is no longer monotone and existence i
ensured only for values of the velocity less than or equal to
®max- In fact given aw<wn,y, there are two values for the cor-
responding stretch. Furthermore, a®— 0, it follows from (19)—
(21 thatA—1~ or \—0%, the latter case corresponding to col-References
lapse to a disk. The neo-Hookean mate(id)), corresponding to
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. .V-_ Kumar The use of Coulomb’s friction law with the principles of classical rigid-body dynamics
e-mail: kumar@grip.cis.upenn.edu introduces mathematical inconsistencies. Specifically, the forward dynamics problem can
Mem. ASME have no solutions or multiple solutions. In these situations, compliant contact models,
while increasing the dimensionality of the state vector, can resolve these problems. The

~ GRASP Laboratory, simplicity and efficiency of rigid-body models, however, provide strong motivation for
University of Pennsylvania, their use during those portions of a simulation when the rigid-body solution is unique and

3401 Walnut Street, stable. In this paper, we use singular perturbation analysis in conjunction with linear
Philadelphia, PA 19104 complementarity theory to establish conditions under which the solution predicted by the

rigid-body dynamic model is stable. We employ a general model of contact compliance to
derive stability criteria for planar mechanical systems. In particular, we show that for

P. Dupont cases with one sliding contact, there is always at most one stable solution. Our approach

Department Qf Aerospace ?”d is not directly applicable to transitions between rolling and sliding where the Coulomb

Mechanical Eﬂglﬂeeflﬂgy friction law is discontinuous. To overcome this difficulty, we introduce a smooth nonlinear

Boston University, friction law, which approximates Coulomb friction. Such a friction model can also in-

Boston, MA 02215 crease the efficiency of both rigid-body and compliant contact simulation. Numerical

e-mail: pierre@bu.edu simulations for the different models and comparison with experimental results are also

Mem. ASME presented[DOI: 10.1115/1.1331060
1 Introduction ther refined by[11]. Existence and uniqueness is shown for the

There are many applications in an industrial setting where it isé)emal case in which the maximum tangential force at each point

beneficial to understand the dynamics of systems with frictional 2 Pron kf.“.’W”- - .

contacts. Examples include part-feeding systéf and auto- _The _emplr_lcal nature 01_‘ frlctlc_Jn models can cause additional
matic assembly of mechanical componefisd). Examples of me- difficulties with dynamlc S|mulat|0r). The most Wldely. employed
chanical systems with frictional contacts include multifingere odel, for example, is Coulomb friction. When used in combina-

rippers([3]), multiarm manipulation systen@4]), legged loco- jon with a rigid-body contact model, the tangential force is a
gripp ’ P Y - 1ed9 discontinuous function of the sliding velocity and independent of
motion systems, and wheeled robots on uneven teit&ip. In

order to successfully desian and oofimize such mechanical si@ngential displacement. Furthermore, this model does not predict
tems or manufactu?iln r%cesses pa method for modelin a%u h phenomena as microslip, hysteresis, and local adhesion
9p ! 9 2]). Both these difficulties can be overcome by combining the

simulating mechanical systems with frictional contacts is neces: lomb fricti del with a simole | d model of i
sary ([6]). oulomb friction model with a simple lumped model of compli-

In a forward dynamics problem, it is well known that in theance(e.g., the Kelvin-Voigt model13]). At very small displace-

frictionless case there is always a unique solution for the accé]?—ems’ the tangential force opposes the tangential displacement,
erations. When the constraints are not all independent, the systg'rrﬂu'atmg an approximately linear spring. For small oscillatory

is statically indeterminate and the constraint forces cannot :aSplacementS‘ hysteric behavior is exhibited agLdl. With a
uniquely determined. In the frictional case, if all contacts ar

titable modification to the Coulomb friction model, the steady-
known to be rolling(sticking), the existence of a solution can be tate friction force can be made to decrease with increasing veloc-
shown if the constraints are independ€nt]). In all other cases,

ity thus simulating the development of a lubricant filfi2]).
. . However, while the difficulty with discontinuities is eliminated,
the initial value problem can be shown to have no solution or . s
. . X . - o such Coulomb-like friction laws are generally not smooth. The
multlple'solu.thns for speuql ch0|qes of initial coqdltlo(ﬁs,g]). . _laws are described by separate equations for rolling and sliding
The major difficulty of proving ex_lstencg anq UNIQUENESS arsey ot and are not differentiable at transitions between rolling
when rigid-body models are combined with friction laws couplin

normal and tangential contact forces. In these situations, it is ?_d sliding. We will overcome this difficulty by introducing a

tractive to pursue models in which the contact forces are expli Hction model that depends on normal force, but which is continu-
p P g;elisly differentiable.

functions of the state variables. For example, a continuum mo In this paper, we derive a simptwmpliant contact modahat
([10). Each sontact s modeled as icional elasic o viscoelastig) POV @ framework for analyzing ficional forces for con-
: sliraint dynamic systems; arfb) establishes a unique solution for

and the contact force distribution across the contact patch is Callsial value problems in dynamic simulation. We use methods

culated using a finite element mesh. This general approach is fPer singular perturbation analysis to establish conditions under

Contributed by the Anplied Mechanics Division ofiF AMERICAN SOCIETY which the solution predicted by the rigid-body modelsisble
ontributed by the Applied Mechanics Division ol MERICAN IETY OF ——y s Lo )

MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED We argue that_ rigid-body dynamlc simulation is meaningful only
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Junavhen the solution of the compliant contact model converges to the
23, 1999; final revision, June 16, 2000. Associate Editor: A. A. Ferri. Discussion @olution of the rigid-body model. Experimental results and nu-
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departi i i : f . o :

of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, a”r‘ﬁ@rlclal Slgnma'.]t;)ns arbell.lllustratled to .verlfy th?] Stabll.“ty anfa.lySIS'
will be accepted until four months after final publication of the paper itself in thd V€ &lSO desCribe stability resu ts usings@oot nonlinear fric-
ASME JOURNAL OF APPLIED MECHANICS. tion law which is an alternative to the Coulomb’s friction model.
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2 Rigid-Body Models complementarity constraints can be found in the tangential direc-

The dynamic equations of motion for a mechanical syste gndtéyia?lsssummg Coulomb’s friction. We refer the reade{ 1]
comprised of rigid bodies subject to Coulomb friction can be writ- The problem of determining contact forces can be reduced to a

ten in the form linear complementarity probleitCP) that has the forng[7])
M(q)d+h(g,q)=u+dg\ @ x=0, y=Ax+B>0, y'x=0. 6)

whereq e R" is the vector of generalized coordinatd(q) isan The LCP has a unique solution for all vect@sf an only if the

nXxn positive-definite symmetric inertia matrixy(g,q) is an matrix A is a P matrix ((16]). However, even ifA is not aP

X1 vector of nonlinear inertial forces, is the vector of applied matrix, the LCP may have unique solution for special choices of
(external forces and torques, and is the vector of constraint B. For other choices oB, Eq. (6) may have no solution or mul-

forces. The system is subject kaunilateral constraints: tiple solutions. To overcome these inconsistencies, we consider
more sophisticated models of contact interactions in the next
‘I’(Q):((ﬁl(Q), x¢k(q))T>0 (2) section.

and®, in Eq. (1) is thekXxn Jacobian matrixg®/dq. We will

assume, without loss of generality, that this does not include bi-

lateral, holonomic constraints. Further, for the sake of simplicity  Compliant Contact Models

we will assume that nonholonomic constraints are not present. . L
Suppose there are contacts, consisting af rolling contacts . Qur contact model of compllance assumes that the principles of

ands sliding contacts. Let the subscriptsand T denote quantities 191d-body dynamics are valid and the gross motion of the dy-

in the normal and tangential contact directions and the subscri Ic system Is described b_y the state variabigg). However,
S and R denote sliding and rolling contacts, respectively. Thi! addition to the gross motion, there are smiikal) deforma-
Jacobian matrix and constraint forces in E5j. are given by tlons at each contact. Thus a rl_gld body can be modeled_ asa rigid
core surrounded by a very thin deformable layer the inertia of
T_(dI pT_ el T — (T T which is considered to be negligible, as shown in the schematic in
Pa=(Ps,PrrPrr) D3 =(PngtPrgps. () Fig. 1. The gross rigid-body motion determines the relative dis-
A:()\LSNLRHR)Ty (4) placement at the contact poinp{,¢y). The actual relative dis-

placement of the contact point is given by(+ 61, ¢dn+ dn)-
whereu,= —diag(u sign(dDTS)), w is asxs diagonal matrix that The contact forces are related to the normal and tangential defor-
contains all the coefficients of friction at the sliding contadtg, ~Mmations @y, ér) of the deformable layer and their derivatives
is asXn matrix, &g and®;r are bothr X n matrices, and the Q) through the mgterlal properties of the def_ormab_le layer.
total number of constraints=2r +s. A< is the s-dimensional A general viscoelastic model for contact compliance is shown
- . NS

tor of P t slidi tacts. whil ah in Fig. 1. At contacti, the normal and tangential contact forces
vector of normal forces at sliding contacts, wiligg anda r are (\n; @and\t;) between the two contacting bodies may be mod-
ther X1 vectors of normal and tangential forces at rolling con}, " :

: eled as
tacts, respectively.

Contacts between rigid bodies generate complementary con- Ani=Fni(Oni) +Oni(Sni 15N D, i=1,...¢, 7
straints on the positiofor velocity or accelerationvariables and ’ o .
the corresponding force variables. In the normal direction, if no Npi=Ffi(0r) +07,i(6r,67), 1=1,...¢, (8)

new contact becomes active over a finite time interval, then in tha]

interval, there is a complementary equation satisfied by the re}%Eefe the functionsy,; andfy,; are the elastic stiffness terms and

. A _ gn,i andgr,; are the damping terms in the normal and tangential
tive normal accelerationpy,; , and the normal forceh,; ((8) directions, respectively. These functions depend on the geometry

v ) oy . and material properties of the two bodies in contact and may be
Pni=00 Ani=00 dyidni=0, 1=1,... . ®) honlinear. We have decoupled the modeling of the contact forces
This complementary constraint is valid for all sliding contacté.e., the force at a contact is only dependent on the deformation at
(indexed by the subscrigt=1, ... s) and rolling contactgin- that contagt We will consider the case where the tangential force
dexed byi=s+1, ... c). SubscriptR andSare omitted for con- obeys Coulomb’s frictional law:
venience. This condition allows active contacts to become inac- [EREPR )
tive. The case of inactive contacts becoming active is modeled by Til=HIAN -
rigid-body impacts and is treated elsewhe({d3]). Similar An alternative frictional model is discussed in Section 7.

RIGID CORE

RIGID CORE DEFORMED
SHELL

N
!

VISCOELASTIC LAYER UNDEFORMED
UNDEFORMED SHELL

SHELL

Fig. 1 A simple model of contact compliance
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The simplest viscoelastic model is the Kelvin-Voigt model(c) A model with tangential contact compliance is more realistic
given by and can better explain physical observatigris)).
. ) We do not wish to promote unnecessary model complexity,
fi=Ki6, 9i=Ci5, i=1,...¢ (10)  however, and in those situations when a compliant contact model

whereK; and C; are stiffness and damping coefficierita the is not needed, it would be desirable to retain the simpler rigid-
normal or tangential directionsespectively. The coefficients canPody model. The popularity of rigid-body models can be attrib-
be estimated using linear elastic and viscoelastic theory for hated not only to their simplicity, but also to the fact that they
spaces[17]). A more sophisticated model due to Hunt and Cros§"oduce adequate results in a broad range of applications. Clearly,

ley ([18]) incorporates nonlinear elastic and dissipation terms: fgid-body models can only be used when a unique solution can
be determined without any additional ad hoc assumptions. But

even when this is the case, it is meaningful to use the reduced-
order rigid-body model only when the solution from the more
i . . accurate compliant contact model converges to the solution ob-
where « and g are functions of the material properties and theyined from the rigid-body model. In the next section, we will use

local geometry. , singular perturbation theory to investigate stability of the so-
In any of the above models, the normal deformations are Jjjtions obtained from the rigid-body model.

rectly related to the constraints in the normal direction. The nor-
mal deformations and constraint forces are given by

3 .
fi=K;8f, gizzaKib‘iﬂéi, i=1,...c, (12)

Sn,i=max0,— ¢y i(a)}, (12) 4 Singular Perturbation Analysis
if oyi>0, The rigid-body model leads to a set of differential-algebraic
. ) _ equations as shown in Section 2. In the compliant contact model,
Oni=—¢ni(@), 1=1,...¢ 13) the deformations at the contact points are at least an order of
_ : magnitude smaller than the gross motions of the mechanical sys-
A= maX{0.f,i(On,) +On,i(O,i+ i)} tem. By setting these small deformations to zésoby allowing

In the tangential direction we define a new varialtg, to denote the corresponding stiffnesses to be infinitely 1argee recover the
the relative sliding velocity between tligeformed contact points equations of the rigid-body model. This suggests that we can use
at contaci. This quantity is theslip rate, the sum of the tangential singular perturbation theory to decompose the system model into
rigid-body velocity at the contact and the rate of tangential deforeduced(slow time scalg and boundary laye(fast time scalg
mation: models([19]). In mechanical systems described by E®), the
. ) slow time scale corresponds to the reduced-order rigid-body
o= ¢1,i+ o1 - model dynamics and the fast time scale is the time scale that
characterizes the contact dynamif20,21)). The response of the

For rolling contacts, we have . ;
system then consists of a slow response and a fast transient. If the

Ari=fri(Sri) +97i( 81 ,;5Ti) (14) boundary layer model is exponentially stable, the fast transient
o R will exponentially converge to zero and it is reasonable to neglect
ori=—¢ri(q), i=s+1,...c, (15) the high-frequency contact dynamics. In such a situation, the

reduced-order model obtained by neglecting the compliance is

in conjunction with the frictional inequality of EqS). For sliding robust to the unmodeled dynamics. If the boundary layer model is

contacts, not stable, we cannot neglect these terms and it is necessary to use
S _ the complete dynamic model given by E¢$2)—(18).
ori=hyiN;—f1i(S7.4)), 16 : 7. . : X
ri=hril = fri(dr) (16) We first partition the generalized coordinatgsnto the fast
N7i=—physignioy), i=1,...5, (17) variablesq, related to the contact deformations, and the remain-
. . . . i I iables,q,. W ingl fi t of
whereh+;(.) is the inverse of the functiogy; in Eq. (8) for a i/nagri;b?ev;.varlab €S0z e accordingly define a new set o

given 67 ;. For both sliding and rolling contacts, we track the

tangential deformations by integrating the expression for its b D\(91,02)
derivative: p= 1) =| ®1r(01,0) | eR",
t P q
Sri= | Spidt+S7i(to) (18) ?
E e TR where p;,q; € R* and p,,q,e ®" k. Recall thatk is the total

number of constraints. In order to mage valid choice of coor-

In order to determine which set of equations apply, we stfinates, the implicit function theorem requires that the Jacobian
with the assumption that any contact is rolling. If the tangentig},airix

force from Eq.(15) violates the frictional constraint if9), the

contact is sliding and Eq$16)—(17) yield the correct force with Dngexn)
sign(o;) taken to be the opposite of the sign of the tangential r= Drryrxn) e ;XN
force in Eqg.(15). It is clear that Eqs(12)—(18) always provide a On—toxk | (n—kyx(n—k)

unique answer for the normal and tangential contact forces and the ) ) .

positive-definiteness d#l in Eq. (1) yields a unique solution for be nonsingular, th.at is, the contact normals and th.e. rolling tan-

gents have to be linearly independent. If these conditions are sat-
There are two disadvantages of the compliant contact modified, we may write

First it is clear that we now need to model the contacts and this o b,

increases the possibility of modeling errors. Second, and more ( )=J(pl,p2)(- )

importantly from an computational standpoint, there is a need to 42 P2,

extend the dimension of the state space from-2(c+r) to whereJ=I""1. Note that the choice of the-coordinates is arbi-

2n+c in order to track the tangential deformatiofy;;, at each trary as long asI'"! exists. The time variable and the

contact. The three main advantages, which outweigh the disadvpreoordinates can be nondimensionalized by letting

tages, arefa) The normal and tangential forces are now uniquely ‘

determined and there is no question of static indetermindvy; S =_p-1 —~_pn-1

The difficulties with uniqueness and existence no longer arise; and T+ P1=Di7P1 P2=D:7p2, (19)
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whereT is the characteristic time scale ahds dimensionlesp; motions. Asd, tends to zeroge goes to zero, and the compliant
andp, are the nondimensionalized fast and slow variables, reentact model degenerates into the rigid-body model.
spectively.D; is a diagonal matrix whose components are the We usee and the dimensionless variables(®) to perform a
deformation length scales whilB, is a diagonal matrix of the second change of coordinates. Let

characteristic scales of the slow variables. For the sake of simplic-

ity, all contacts are assumed to have similar physical properties, x=(x1,%)"=(P2,05)", yY=(y1.Y2)"=(P1,Vep;)" (20)
and the diagonal matrix of the deformation scales can be defined

asD;=d;-l,«x. We also define a parameteas the dimension- be the new state variables and rewrite the dynamic Elsin
less ratio,d, /L, whereL is the length scale for gross rigid-bodystate space notation:

Jey; Ya
X1 X2

- , 1)
f}” (T2D 1 M2\ + | T2D 1372~ Hu—h)—TJ- 13([3’2 )

2

where ' denotes the differentiation with respect tn D Perform a linearization of the boundary layer mo¢4) around
(L Tkxk 0 ) and \;=f;(—eLyy;)+0i(—eLyi;,— ey, L/T). the equilibrium solutionyy(xy). We obtain the homogeneous

Here we use the notatioy ; to refer thejth component of the boundary layer dynamics of the form

vectory; . x(t) andy(t) represent the dimensionless slow and fast Z'+PZ' +Qz=0y«1, (25)
trajectories, respectively.
The differential equations for the fast variables are given by with

- Rz 3(A(X0,Y.0N(y,0)+ B(X0,y.0))
vey'= (A(x YNy, e)+ B(X,y,e)) #2) P=- 7y ’
. 2 Y=Yo(Xo)
with
o YN(y 6) T2 )\N \ o _ 5(A(X0:Y:O))\(yvo)+B(XOvaO))
=" = = - :
e ()\TR(y, €) Dul )\TR)’ Mniy.€)=0, V1 ¥Y=Yo(%o)
A(X,Y, E)ZDML(Dfl\Jflelq)g)kk, The response of the above system equati¢n), is the transient
e that describes the dynamics associated with the compliance at the
e laias—1 B 1 €Y, contact points. The stability of the system implies the convergence
B(X,y,€)=(T°D™"J" "M~ 7)n(u—h)=(TI""J)y ( ' of the compliant contact model solutiotft, €) to the rigid-body

model solutionxy(t). We can directly apply Tikhonov’s theorem
[19] to get the following result:
THEOREM 4.1 Consider the system described by (21) and let
Yo(X) be an isolated solution of (23). If the following three con-
ditions are satisfied byx(t),y(t),e) for all te[0,t;] and €
Yo ) e[0,60]: (a) the terms on the right-hand side of (21) and their
N, =021 (23) first partial derivatives with respect t(x,y,e) are bounded and
ACGY.OMY,0+B(Xy,0 continuous; (b) the origin of the boundary layer system (25) is
We say that the singular perturbation mod21) is in standard exponentially stable; and (¢)o(x) has continuous first partial
form if and only if the above algebraic equations have at least oderivatives with respect to its arguments, then the following are
isolated real root fol in terms ofx. We will proceed with the true:
stability analysis with the assumption that E2@3) has at least one . . .
feasible solutionyy(x). We now look at the solution to E@21) * The reduced rigid-body model, obtained fr¢&1) by substi-
. - 7 . . el tution of y=yq(x) and e=0, has a unique bounded solution
with y=y,(x) and e=0. This solution, denoted byy(t), is the for all h 0
solution of the reduced rigid-body system. Xo(1), for all te[to,t,], where e [0t;].
» There exist positive constant, and ¢, such that for the
Assume thaxo(t) is defined fort €[ 0,t,]. At an arbitrary time I - — — S -
initial conditions x(tq,€) and y(ty,€) satisfying|y(tq,e€)
|nstancetoe[0t1] the boundary layer system @¢22) can be B 0 <8, and0< e<e,. the singul turbati
introduced through a “stretch” of the time scatest —to/ €. In ry%(IX(mOH ) ;,"an |6tl fot, € s;:ggutar pernutrh allr?n
the stretched time scale the variables andx(t,e) are slowly problem has a unique solutiak(t, €) andy(t, ) on the in-
- = L terval[to, 1] and
varying. Sincet, is allowed to take any value ih0O,t;], the — —
boundary layer system @22) can be written withr as the inde- X(t,€)=xo(1)=0( ), y(t,e)—yo(t)=0(1/e).
pendent variable:

where Dy, is the characteristic mass. Here)) (s refers to the
submatrix in(.) consisting of the firsta rows and the first3
columns. Ase goes to zero, Eq22) degenerates into the follow-
ing algebraic equations:

Proof. The proof of this theorem follows directly from
( Yo Tikhonov’s theorem, and is a direct application of Theorem 9.1 in
y!
(

~ L AX0,Y,ON(Y,00+B(%0,y,0 (24) [19].

Remark 4.1

where’ now denotes differentiation with respect toLet
z
Z/
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» The stability of the boundary layer system is determined by

the matricesP and Q, or specifically, the eigenvalues of
=Y—Yo(Xo)- (kaklkxk)




e Other than the general constitutive model described by Eqgs. 1 L2cosf

(7) and (8), no specific compliant contact models are intro- A= = + I (cosf— ugsinb),

duced in the discussion, therefore the stability results will not

change when different compliant models are employed. _— F, LcoséF,

. . . - B=L6# sinf+ —— .
It is worth noting that the requirements on the continuity of the m |

first partial derivatives in Theorem 4.1 are not satisfied WhenevE
there are transitions from rolling to sliding or sliding to rolling arantees a unique solution. BE0 we are guaranteed of the
because of the nonsmooth nature of Coulomb’s law. In the n istence of a solution regar.dless of whether or Aok a P
section, we will apply Theorem 4.1 to planar mechanical systern§

with one contact and discuss the cases of sliding and rollin atrix.
separately 9 9we now proceed with the singular perturbation approach to the

problem. A transformation to a system of fast and slow variables
can be accomplished by making the change of variables as

bte with ms=0,A>0 and thereford is a 1xX 1 P matrix, which

5 Planar Mechanical Systems With One Contact

Consider the planar rigid body depicted in Fig. 2 in contact with

a horizontal surface, wheteis the distance from the contact pointUse (19) and(20) to nondimensionalize the state variables with
to the center of mas¢CM). The rigid body has masm and

centroidal moment of inertia q=(y x 6)T represent the general- L0 d

D]_:dl, D2= 0 1 f and E=r.

ized coordinates for the rigid body which are the position of the
CM and the angular orientationF(,F,) are the external forces . _ -
scing on the biody an, s he exterl moment about the G141 HAISCETSAE i, the mass of e tidboy
w is the coefficient of friction between the rigid body and surface, stem with one slidina contact is given b
The equations of motion for the system with one contact are givgx 9 9 y
, \
Vey'=

by Eqg. (1) with (
y m 0 0 F, ACOM(Y,€) +B(X)
q:(x), M=[ 0 m 0], U:(Fx), and h=03,,. X2
0 O

X
qi1=Y, QZ:(G)- p1=Py, and p,=d;.

’ | P . nn(y e+,
(26) X= m LZ
For sliding contact: 7 (s SinX, = COSXy IAn(Y,€) +Fy
\
Di=(1 ps plsing—Lcosd)T, N\=Ay=\ys, (27) (30)
and for rolling contact: where

1 0 el
T 0 1 ANR . fn(—eLlys) +on —eLyl,—?yz
o™ I PRI (Y€)= -0,

—Lcosé Lsing m_L
. T?
where ug=— u sign(®y).
- . - L?
5.1 _Slldlng Contact. For the sliding case, the rigid-body A(X)=1+ m—COSX1,2(COSX1,2—,ussinxl,g),
dynamics can be modeled as a LCP of the form ' (31)
by=ANy+B (29) B(X) =X3 ,SiNX, ,— F  COSXy o+ Fy,
where _ F, _ F I =
. . Fi=—r, Fy=—2, and F,=—".
®y=0, \y=0, and PdN\\ =0, m_L m_L I_
T? T T?

Note that the symbot; ; refers to theth component of the vector
X; . By following through the same derivations given by Egs.
(21)—(25) in Section 4, the linearized boundary layer model of
(30) can be obtained as

é&wm)

z' —A(X
oy (%)

Y=Yo(Xg)

z”—A(xo)(

z=0, (32)
Y=Yo(Xg)

XVMW@)
ay1

whereyg(x) is a solution of the algebraic equations obtained by
setting e=0 in (30), and xy(t) is the solution of the reduced
system 0f(30) corresponding tgy .

__In a general viscoelastic model, it is reasonable to assume that
A\ is @a monotonically decreasing function with respecytcand

y,. With this assumption, ifA(X,,0) is positive, the boundary
Fig. 2 Planar rigid body in contact with a rough surface layer system(25) is stable, and the stability of the solution for the
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Table 1 LCP and stability results for one sliding contact (C 1. For the contact maintaining solutions, the result of the singular

=contact, NC=no contact, NS=nosolution, ~  RB  perturbation analysis states that stability only occurs where the

=rigid-body model, ~CC=compliantcontactmodel;, * indicates  quantity A in the LCP formulation is positivéP matrix). If the

that the stability result comes from the fact that the noncontact LCP reports an unique solution, we use the rigid-body model to

solutions  (free falling ) are always stable ) simulate the dynamic motion. For the case when the LCP has two
Conditions Soluions  Stability  Preferred Model ~ Solutions A<0,8=0), we can still use the rigid-body model

since the stability analysis shows a unique stable solution.

A>0 B=0 NC stablé RB

A>0 B<0 C stable RB 5.2 Rolling Contact. The rigid-body dynamics can once
ﬁzg Ezg w 's\‘cﬁns statzlé gg again be formulated as an LCP with the help of surplus and slack
A=0 B<0 NS N/A cC variables([7]). The singular perturbation analysis proceeds in ex-
A<0 B=0 C unstable discard actly the same way as in the previous section. The following is a

NC stable RB partition of the generalized coordinates for the rolling case:
A<O0 B<0 NS N/A CcC
Y _ _[®n _
%*(X v 02=0, p1= (DT)' and p;=0;.

singular perturbation probleif21) is guaranteed if all other con- The linearized boundary layer model for this case is given by
ditions in Theorem 4.1 are satisfied. In a single point sliding con-

tact problem, the rigid-body LCP formulatidi29) has a unique (;f(y,o) (;f(y,o)
solution if and only ifA(x,,0) is positive. The above conclusion 2"~ A(xo)| — Z'=AXo)| —
can be summarized into the following theorem. Y2 Y=Yo(%o) Y1 Y=Yo(%g)
THEOREM5.1 For a planar rigid body with a single sliding con- —0 39
tact described by (1) and (27), the solution obtained from the 2 (39)
compliant contact model converges to that obtained from thenqre
rigid-body model if and only if there exists a unique solution for
the rigid body LCP formulation (29). This result is independent of — T T T
the compliant contact models as long as the monotonicity condi- =(Anr MR
tion, —d\(y(t),0)/dy, >0, is satisfied.
As examples, we show that the stability results are the same for mL? mL*
both the Kelvin-Voigt and the Hunt-Crossley models. From Eq. 1+ |_CO§ X1 7 T SINXp €0SXy
(10) and the expression if81), the dimensionless normal contact ~ A(x)= 2 mL2 ,
force for Kelvin-Voigt model can be written as - |—SinX1 cosx, 1+ I—sinz Xy
An(Y,€)=An(y)=—Ky;=Cy,. (33)
where the nondimensional stiffness and the damping are defined (x)= Fy—Fgcosx;+ X5 sinxy (40)
as F ot Fysinx;+x5 cosxy |
— K = C In the above systemA(xg) is symmetric, and its eigenvalues
K= 1 mL>0 and C= 1 mL>O' (34) are given bya; =1, a,=1+mL?/| which are positive real num-
e T2 m Tz bers. Also if\ is a monotonically decreasing function with respect
€ to y, both —d\(yq,0)/dy, and —d\(y,,0)/dy, are diagonal ma-
The boundary layer system is obtained as trices with positive entries. In this situation, the stability of the
boundary layer systerf89) follows from the Routh-Hurwitz cri-
z”+A(x0)Ez’ +A(X0)EZ=0. (85) terion. The reason is that for rolling constraints, the contact model

corresponds instantaneously to a frictionléss dissipatioh com-
€¥raint pin joint. Viewed in this context, the contact forces corre-
spond to the joint constraint forces. It is not surprising that, in the
— — — _— rigid-body limit, these forces are always stable. In contrast, the
An(Y,€) = Ay(Y) =K(—y1)#—aK(—y;)Py,, (36)  singular perturbation analysis of sliding included the dependence
where of tangential friction force on normal force. This dependence pro-
duced the potential for instability during sliding. Since the LCP
K — 3 «a and singular perturbation analyses for sliding both included this
m>0 and a= 271 >0. (37) dependence, it was possible in Theorem 5.1 to relate the LCP
——5—r existence and unigueness results to the singular perturbation sta-
(eL)” T Jel/T bility result.
There are three possible solutions for the LCP formulation of a
stem with a rolling contacta) breaking contact(b) continued
rolling, and (c) transition to sliding. The conditions of Theorem
) _— P , — p-1 4.1 for use of the rigid-body model include continuity and differ-
2"+ A(Xo) aK (= y1)Ply—y )2 +AMX0) BK(= YD) Hymy 42 entiability of the tangential contact forces. These conditions are
—o 38 not met during(a) or (c) because the contact forces need only be
e (38) C° continuous at a transition. Therefore, we cannot derive a result
Sincey, =<0 for any active constraint, it is clear that the stabilsimilar to Theorem 5.1 for rolling contacts. It is possible, how-
ity of the boundary layer dynamics, described by eitt®5) or ever, to state the more conservative result:
(38), depends entirely on the value A{xy). Thus, independent THEOREM5.2 For a planar rigid-body with a single rolling con-
of the choice of contact modef(x,) may used to test contacttact described by (1) and (28), the solution obtained from the
force stability in those situations where the LCP tells us that tleampliant contact model converges to that obtained from the
contact is maintained. A summary of the results is given in Tabiegid-body model whenever the LCP formulation yields a unique

For Hunt-Crossley model, the normal contact force can be
pressed as

K=

The linearized boundary layer system for Hunt-Crossley model@
given by
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solution corresponding to continued rolling. This result is indeat approximately 0. sec, the sliding velocity changes direction
lut ding t tinued roll Th It deat tely 0.205 the slid locity ch direct
pendent of the compliant contact models as long as the monoso-that the contact point slides to the right. In Fig. 4, we show the
nicity condition of\ is satisfied. experimentally observed trajectory and the simulation results for
a) the trajectory of contact pointb) the normal contact force,
. . - . . ; - and (c) the tangential contact force. The simulation results are
dynamics of a single rigid body in which the unilateral constrainis, . ;e for the rigid-body LCP solution and for the compliant
were due to one contaaﬁi;l@ng or rolling with a second fixed contact model for a range efvalues. The coefficient of friction
rigid body. When we consider multiple planar rigid bodies with sed in the simulation is —0.27
bilateral constraints, but only one contact, a similar result can HeThe first thing to note?sthét tHere is a close agreement between
ggr'lvidé(l:g s;nc dh t?leciso?l’si?:in(:)sm(?anr]llcsstiIfloérgucigtsigﬂzéglg enga”ﬁﬁé experimental trajectory and the rigid-body LCP solution with
27) (58) if the operational space inertia matrid, exists F'il'he the same initial condition as expected. The second issue to focus
P! ; . e T e n is the set of results from the simulation of the compliant con-
o_nly differences are th_at the inertia matrix, i It exists, s no I_onge%ct model. Even though the initial condition for the F():ompliant
diagonal but symmetric and siill positive definite, amlq) is &)ntact model solution is different from the equilibrium solution,

no longer zero. But these differences will not affect the properti ; i )
of the A matrix in the boundary layer systent32) and (39) it quickly converges to the equilibrium solution. The convergence
: é an absolute time scale is faster abecomes smaller. This is

Consequently, the basic ideas developed in this section are so evident at the transition from reverse to forward sliding,

valid, and the main results are applicable to any mechanical s ich includes a very brief period of rolling. The discontinuity of

tem in which the unilateral constraints are due to a single contagt. . . . . S X
9 the rigid-body dynamic model with Coulomb friction is seen in

. . . the contact force variation in Figs(B) and 4c). However, the
6 Results From Experiments and Simulations compliant contact model yields a continuous solution that can be
In this section, we compare the results of numerical simulatiof@ade to approach the solution of the LCP model arbitrarily
with experimental observations. In the experiments, an aluminugtpsely by lettinge assume very small values.
;Iod with spherical ends is released from rest, while contacting 455 Case 2: The LCP has Two Solutions. In Section 5 we
at, rough, fixed surface, with different initial positions. We useghowed that. in cases when the LCP formulation for sliding con-
the OPTOTRAK-3020(Northern Digital, Inc), a noncontact t has tw ’ uti th del of the bound | 9 i
three-dimensional motion measurement system with an accuré?c as two sofutions, the model o7 the boundary fayer system

better than 0.1 mm in each coordinate direction and a tracking r é) predicts that the contact maintaining solution is unstable. In

can be as high as 1000Hz. The experimental setup is shownjich Cases, at any instant, the LCP predicts two possible out-
Fig. 3 ' comes. While it is possible to simulate either outcome using the

The numerical simulation is based on the dynamics given %\?mp"?”‘ contact model, a simulation based on the rigid-body
Egs. (1) and (27). The length and diameter of the tested rod ar odel_ |nvolve_s making a_ch0|_ce at each EUCh point.

0.468 m and 0.00948 m, respectively. The mass is 0.088 kg. Thd'" ideal uniform rod withL =1 m andm=1 kg is used in the
compliant model used in the simulations is the Hunt-Crossiéymulation. The initial condition of the rod aré=70 deg, §=0,
model expressed by Eq86)—(37). The only unknown parameter @1dX=Yy=0. The external forces af,=0, F,=—mg, andM,

in the equations is the coefficient of friction. The coefficient off —1 Nm. The coefficient of friction ig.= 1. The compliant con-
friction for the simulation is chosen to be the value that be&Ct model used in the simulation is the Hunt-Crossley model with

approximates experimentally observed trajectories in a leat?e same parameters as in Case 1. Because this case can only be

5.3 Extensions. In the treatment thus far, we considered th

squares sense. achieved at carefully chosen values of external forces or initial
) . . velocities, we were unable to reproduce this case experimentally.
6.1 Case 1: The LCP has a Unique Solution. We firstcon-  |n Fig. 5, we show the results of the rigid-body solution assum-

sider an experiment in which our rigid-body LCP predicts gng that(a) the contact breaks &t 0—the first solution; andb)
unique solution throughout the duration of the experiment. Thae contact is maintained @t=0—the second solution, and at
initial conditions of the rod ar@=42.3 deg,6=0, andx=y=0. future time instants as well. The main point to be observed in Fig.
The external force aré,=0, F,=—mg, andM,=0. The related 5 is the performance of the compliant contact model. As shown in
parameters used in Hunt-Crossley model lérel, =1, andB Fig. 5b), even when started from the condition of maintaining
=2. The trajectory corresponds to a condition of sliding where tlentact, the solution for the compliant contact model exponen-
contact point slides to the left. The sliding velocity decreases, atidlly converges to the stable solution of no contact. The rate of

M

Position Sensors

N

Infrared LEDs

Fig. 3 The experimental setup
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Fig. 4 Case 1: The LCP has a unique solution and the compliant contact model solution converges to
the rigid-body model solution as the perturbation parameter egoesto 0

convergence increases with decreasiag In contrast, att tions, one stable and one unstable, we can always choose the
=0.163 sec, the rigid-body solution corresponding to maintainirgjable solution and use the rigid body model to continue the

contactdreaches a state where the IBCP hasba unique solution &jnulation.

responding to contact separation. This can be seen in FyaS inti

thepdiscon%nuous drop inp normal contact force. The fafggthat th7e Friction Models

compliant model solution converges to the stable rigid-body There are many types of friction phenomena and equations to
model solution indicates that in cases when LCP has two solwmodel them. Coulomb friction is one of the simplest and in many
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Fig. 5 Case 2: The LCP has two solutions, maintaining contact (unstable ) and separation (stable). If
the compliant model solution is started with the unstable maintaining contact solution, it quickly con-
verges to the separation solution  (stable).

situations can adequately predict the system’s behavior. Neverteaggested ir[23]). Many others([12]), including Dahl's model
less, its mathematical properties complicate dynamic simulatiamd the bristle model, can be considered to be extensions of the
for both rigid-body and compliant contact models. The difficultiesompliant contact model.
caused by Coulomb'’s friction model in rigid-body dynamic simu- Our interest is in the simplest friction law that approximates
lation are due to the following issued) the friction force is not Coulomb friction and is a continuously differentiable function of
smooth during rolling-sliding transitions; ani@) during rolling, the system states. Such a model would allow us to formulate the
the friction force cannot be directly determined from the statdynamics using either rigid-body models or compliant contact
variables. When solving the forward dynamic problem, these two
issues can either increase the complexity of the system or cause
analytical difficulties. Specifically the rolling and sliding con- X\
straints need to be handled differently in the rigid-body formula- 2T
tions([7]). This is also the main reason that our stability results in BAN
Section 4 are not applicable to transitions from rolling to sliding. 1
Furthermore, cases arise in which a unique solution to the forward | .
dynamics problem does not exist. |
Since these difficulties are due to the Coulomb model, it is |
possible to overcome them by substituting a model with the reqg- |
|
|
|

Coulomb's law

o
tanh —

uisite mathematical properties. In fact, nonclassical friction laws —
which are nonlinear and nonlocal have been found to be superior
to pointwise Coulomb models from both a phenomenological and
a computational viewpoin{(22]). A few of these models were
developed specifically for rigid-body dynamics. For example, a
discontinuous model that extends the Coulomb’s stiction zomgy. 6 A smooth, nonlinear friction law with two parameters 7
from zero velocity to a small neighborhood of zero velocity ia characteristic speed, and  u, the coefficient of friction

|
|
1 ;
<
l

-1
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Fig. 7 Results with the smooth nonlinear friction law (y=107%). The transition from reverse sliding to
rolling to forward sliding at  t=0.205 sec is characterized by a smooth variation of contact forces.

models while improving the performance of both. A friction lawations with no solution or multiple solutions. And, as before, the
with these properties is shown in Fig. 6. It has a one-to-one caempliant contact model given by Eq4.2) and(42) resolves the

respondence between the friction fobcgand the relative tangen- difficulties with uniqueness and existence. Since the stability
tial velocity @ . The small parametey defines the extent of the analysis in Section 4 can be easily applied to this new frictional

D= (41)

“rolling” regime: ®te[—1v,y]. By letting y tend to zero, we model without worrying about transitions between rolling and
can obtain an arbitrarily close approximation to Coulomb’s lavgliding contacts, Theorem 5.1 can be directly extended to any
albeit with some sliding in the “rolling” regime. Using this fric- planar mechanical system with a single rolling or sliding contact.
tion law with the rigid-body dynamic model expressed in Eq®ecause the rolling constraint is now replaced by “microsliding”
(1)—(2), we no longer need to differentiate between rolling angith the tangential contact velocity smaller thgnthe proof fol-
sliding contacts. Instead, the Jacobian matrix) in Eq. (3) al-  |ows exactly the same lines of the proof in Section 5.1.
ways takes the form To illustrate the effect of the smooth friction law, we consider
. the same situation shown in Fig.(€ase 1 in Section)6 Recall
o7 — T dia tan % the transition from reverse sliding to rolling to forward sliding in
Ng ' Tq m v/ Fig. 4 att=0.205 sec. Figure 7 shows the results of the simulation
This gives rise to a unified LCP formulation that works for botr\{ylt.lzj tgedsmoot(? I”CUO;. I?de.v'th ﬂ:.e sime .m'tt'ﬁl condtltlopsf. The
rolling and sliding constraints. The smooth friction law can alspdid-Pody MOdel predicts discontinuities in the contact forces.
improve numerical performance of the compliant contact mod Jowever, th_e (_:ompllan_t contact_predlcts a smooth transition from
since we no longer need the deformation state veétorto com- sr!d!ng to shckmg(rglanvg vglocny less than the threshoyi to
pute the tangential force which is uniquely defined by the normaiding in the opposite direction. _ . _
contact force and the relative velocity. The main dlsadyantage of the nonlinear frlctl_on I_aw is due to
the fact a static friction force can only be maintained through
r(ch i “creep” in the tangential direction. While the “creep” rate is less
Nri=—ptanh —— | \y; (42) thanvy, andy can be set to a very small value, it is not a very
Y attractive solution because it has the adverse effect of making the
As is the case with rigid-body dynamics and Coulomb’s lawsystem of ODEs stiff. There is a natural tradeoff that must be
the LCP formulation with the smooth friction law will have situ-considered in selecting the paramejer

Journal of Applied Mechanics JANUARY 2001, Vol. 68 / 127



8 Concluding Remarks References

When rigid-body models are used in conjunction with Coulomb [1] "C/”f“Chv 33-’ fghguﬁaﬁgé T G;?'dbsfg' KSI’t ?‘iigv - Z;“gmt?' R tcé“”s(;; Bé' and

H H H H H it anny, J., s stimatin 0ose Statistics Tor Robotic Part Fee .
friction for dynamlc S!mm?tlon.Of sy_stems with frictional _COI’I- of they1996 IEEE Int'l Conf.gon Robotics and Automatfipp. 1140—112?3.
tacts, there may be situations in which there are no solutions Of2] Donald, B. R., and Pai, D. K., 1990, “On the Motion of Compliantly Con-
multiple solutions for the contact forces and the accelerations. IN "~ pected Rigid Bodies in Contact: A System for Analyzing Designs for Assem-
this paper, we describe a contact model that models the small bly,” Proc. of the 1990 IEEE Intl Conf. on Robotics and Automatipp.
compliance in the normal and tangential directions. We show that 1756-1762.
this compliant contact model, when used with the rigid_body dy_ [3] Hgvye, R. D.‘, and_Cutkosky, M. R., 1996, “Practical Force-Motion Models for
namic equations of motion, always yields a unique solution for the__ Sliding Manipulation,” Int. J. Robot. Res15, pp. 557-572.

. . . . . é4] Song, P., Yashima, M., and Kumar, V., 2000, “Dynamic Simulation for
accel_eratlor_ls_ and the force_s' While this model is superior to th Grasping and Whole Arm Manipulation,Proc. of the 2000 IEEE Int'| Conf.
traditional rigid-body model in terms of accuracy and robustness, o, Robotics and Automatiowol. 2, pp. 1082—1087.
it is also more complex and requires a larger number of paramgs] kumar, V., and Waldron, K. J., 1989, “Actively Coordinated Vehicle Sys-
eters. Therefore, it is appealing to use rigid-body models, when- tems,” ASME J. Mech. Des111, pp. 223-231.
ever concerns of uniqueness and existence do not arise. [6] S_acks, E.,_ and _Joskovx_/icz, L., 1995, “Computational Kinematic Analysis of

The main contribution of this paper is the use of singular per-  Higher Pairs With Multiple Contacts,” ASME J. Mech. Ded17, pp. 269~
turbation t.h‘?ory to establish conditions !‘mder which solut|on_s[7] Trinkle, J., Pang, J.-S., Sudarsky, S., and Lo, G., 1997, “On Dynamic Multi-
from the rigid-body model are stable, or in other words, condi-" " Rigig-Body Contact Problems With Coulomb Friction,” Z. Angew. Math.
tions in which the compliant contact model solution converges mech.,77, No. 4, pp. 267-280.
exponentially to the rigid-body model solution. In situations when [8] Létstedt, P., 1981, “Coulomb Friction in Two-Dimensional Rigid Body Sys-
rigid-body LCP analysis reveals multiple solutions, stability tems,” Z. Angew. Math. Mech.61, pp. 605-615. ) o
analysis can resolve the ambiguity. We can simply discard thd®! Mason. M. T., and Wang, Y., 1988, “On the Inconsistency of Rigid-Body
unstable solutions and retain the stable one. The stability analysis Z:gtﬁgfg;;g?p'\:e;gji'g;épmc' of the 1988 [EEE Intl Conf. on Robotics
ShOWS when it is essential to pqr;ue the more sophisticated COMo] wang, Y.-T., and Kumar, V., 1994, “Simulation of Mechanical Systems With
pliant contact model, and when it is satisfactory to neglect the fast = unilateral Constraints,” ASME J. Mech. Ded.16, No. 2, pp. 571-580.
dynamics. The basic issues are illustrated with the help of &1] Howard, W. S., and Kumar, V., 1993, “A Minimum Principle for the Dynamic
simple example with one contact that may be rolling, sliding, or  Analysis of Systems With Frictional ContactsProc. of the 1993 IEEE Int
separating. The case of rolling contacts poses an additional diffi-_ €onf- on Robotics and Automatioviol. 1, pp. 437-442. .
culty because of the fact the tangential forces obtained by fEiengHiany B Duront B s e WL T80 B Sl
Coulomb-like frictional laws, even when used with compliant  ihes with Fyriction," Automatica;?O, No. 7, pp. 1083-1138.
contact models, are not smooth functions of the state. The second] kraus, P. R., Fredriksson, A., and Kumar, V., 1997, “Modeling of Frictional
main contribution of the paper is the result that a smooth nonlin-  Contacts for Dynamic Simulation,Proceedings of IROS 1997 Workshop on
ear friction law, inspired by Oden and Pires’ nonlinear friction ~ Dynamic Simulation: Methods and Applicatiorgept.
law ([22]), overcomes this difficulty. We show that in the case oft14] Hayward, V., and Armstrong, B., 2000, "A New Computational Model of
planar mechanical systems with one contact, there are at most two E”Ct'or.‘ Applied to Haptic Rendering, Experimental Robotics ViLecture

R . K otes in Control and Information Sciences, Vol. 258. Corke and J. Treve-
solutions, and there is only one stable solution. o lyan, eds., Springer-Verlag, Berlin, pp. 403—412.

The basic ideas of this paper are applicable to any situatiois) song, P., Kraus, P., Kumar, V., and Dupont, P., 2000, “Analysis of Rigid
with frictional contacts. However, in order for the rigid-body Body Dynamic Models for Simulation of Systems With Frictional Contacts,”
model, and therefore the perturbation analysis to be applicable, we Technical Report MS-CIS-00-08, Department of Computer and Information
are limited to planar problems with three or less independent con- S(t:ier;wce, Ur?iversity of Pennsylvania, available at http://www.cis.upenn.edu/

H . H H H ~tecnreports.
Stra!nts and spatlal pro_blems with six or less Independent CQE_G] Cottle, Rp. W., Pang, J. S., and Stone, R. E., 199% Linear Complementarity
straints. Note the compliant contact model can always be appli d Problem Academic Press, San Diego, CA.
without such limitations. Since not all of the constraints of the17) jonnson, K. L., 1985Contact MechanicsCambridge University Press, New
physical system are embodied in the rigid-body mathematical vork.
model, a study of the stability of these solutions based solely oli8] Hunt, K. H., and Crossley, F. R. E., 1975, “Coefficient of Restitution Inter-
the structure of the LCP itself is not justified. Existence and _ Preted as Damping in Vibroimpact,” ASME J. Appl. MecH2, pp. 440-445.
uniqueness problems suggest the inapplicability of the rigid-bodg}g] Khalil, H. K., 1996, Nonlinear Systems2nd Ed., Prentice-Hall, Englewood

model altogether and not simply uncertainty in or sensitivity t Cliffs, NJ.
g ply Yy Yy 0[20] Dupont, P. E., and Yamajako, S. P., 1997, “Stability of Frictional Contact in

model parameter values. Constrained Rigid-Body Dynamics,” IEEE Trans. Rob. Autofi8, No. 2, pp.
Our future work addresses incorporating stability analysis as a 230-236.
diagnostic tool in real-time simulation where it is prudent to check21] McClamroch, N. H., 1989, “A Singular Perturbation Approach to Modeling
for stability and warn the user in unstable regimes. and Control of Manipulators Constrained by a Stiff EnvironmerRyoceed-
ings of the 28th Conference on Decision and Contppl. 2407-2411.
[22] Oden, J. T., and Pires, E. B., 1983, “Nonlocal and Nonlinear Friction Laws
Acknowledgment and Variational Principles for Contact Problems in Elasticity,” ASME J. Appl.

Mech.,50, pp. 67-76.
The support of NSF grants GRT-9355018, MIP-9617997 anfhy kamopp, b., 1985, “Computer Simulation of Stick-Slip Friction in Mechani-

CISE/CDS-9703220, and ARO grant MURI/DAAH04-9610007 cal Dynamic Systems,” ASME J. Dyn. Syst., Meas., Contfdl7, pp. 100—
are gratefully acknowledged. 103.

128 / Vol. 68, JANUARY 2001 Transactions of the ASME



Journal of
Applied

Mechanics

A Brief Note is a short paper that presents a specific solution of technical interest in mechanics but
which does not necessarily contain new general methods or results. A Brief Note should not exceed
1500 wordsor equivalent(a typical one-column figure or table is equivalent to 250 words; a one line
equation to 30 words Brief Notes will be subject to the usual review procedures prior to
publication. After approval such Notes will be published as soon as possible. The Notes should be
submitted to the Technical Editor of theurRNAL OF APPLIED MECHANICS. Discussions on the Brief
Notes should be addressed to the Editorial Department, ASME, United Engineering Center, Three
Park Avenue, New York, NY 10016-5990, or to the Technical Editor of therR3IAL OF APPLIED
MEecHANICS. Discussions on Brief Notes appearing in this issue will be accepted until two months
after publication. Readers who need more time to prepare a Discussion should request an extension
of the deadline from the Editorial Department.

Correspondence Princip|e in sive reviews of ongoing FGM research may be found in the article
. . . by Hirai [10] and the book by Suresh and Mortengéa].

Viscoelastic Functionally Graded One of the primary application areas of FGMs is high-

Materials temperature technology. Materials will exhibit creep and stress

relaxation behavior at high temperatures. Viscoelasticity offers a

basis for the study of phenomenological behavior of creep and
linot stress relaxation. The elastic-viscoelastic correspondence principle

G. H. Paulino g . :

(or elastic-viscoelastic analogig probably one of the most useful

Mem.. ASME_ . tools in viscoelasticity because the Laplace transform of the vis-

e-mail: paulino@uiuc.edu coelastic solution can be directly obtained from the corresponding
elastic solution. In the present work, the correspondence principle

Z.-H. Jin is revisited in the context of viscoelastic FGMs.

Mem. ASME In this paper, the basic equations of viscoelasticity in FGMs are

formulated. The correspondence principle is established for a

. . . . class of FGMs where the relaxation moduli for shear and dilata-
Department of 'C|\{|I and Environmental _Engmeerlng, tion e(x,t) andK(x.t) take the formsu(x,t) = mome(X) F(t) and
University of lllinois at Urbana-Champaign, K(x,t)=KoK(x)g(t), respectively, wherg, andK, are material

Urbana, IL 61801 constantsz(x), K(x), f(t), andg(t) are nondimensional func-
tions, andx=(xy,X,,X3). The correspondence principle states
This paper presents an extension of the correspondence princigitat the Laplace transforms of the nonhomogeneous viscoelastic
(as applied to homogeneous viscoelastic solids) to nonhomogeriables can be obtained from the nonhomogeneous elastic vari-
neous viscoelastic solids under the assumption that the relaxatigples by replacing., and K, with MOPT(D) andK,pg(p), re-
(or creep) moduli be separable functions in space and time. Af% ectively whera‘_(p) andg(p) are the Laplace transforms of
models for gradgq viscoelastic materialg are presented and d 1t) and g’(t), respectively, angb is the transform variable. The
cussed. The revisited correspondence principle extends to SPEGHG nonhomogeneous viscoelastic solution is realized by invert-

instances of thermoviscoelasticity and fracture of functionallm ; P
. - g the transformed solution. The above correspondence principle
graded materials. [DOI: 10.1115/1.1331286 can also be extended to specific instances of thermoviscoelasticity
and fracture of FGMs.

1 Introduction 2 Basic Equations

Functionally graded material&"GMs) are special composites The pasic equations of quasi-static viscoelasticity of FGMs are
usually made from both ceramics and metals. The ceramic in g equilibrium equation

FGM offers thermal barrier effects and protects the metal from

corrosion and oxidation. The FGM is toughened and strengthened gij;=0, €))

by the metallic com_position]'he compositioq gnd the voIL_Jmethe strain-displacement relationship

fraction of the constituents vary gradually, giving a nonuniform

microstructure with continuously graded macroproperti®sgri-

ous thermomechanical problems of FGMs have been studied, for €ij :z(ui,ﬁ”i,i)' 2

example, constitutive modeling1]), fracture behavior[2—4)),

thermal stresse$5,6]), strain gradient effect§7]), plate bending and the viscoelastic constitutive law

problems([8]), higher order theory[9]), and so on. Comprehen- t t
S” =2f Ukk:sJ

de.
m(X,t—1) id”r,

Kix,t— ) S
. ar = g dn

1To whom correspondence should be addressed. 0

Contributed by the Applied Mechanics Division ofE AMERICAN SOCIETY OF 3)
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MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan!N which oj; are stresses;; are strainss;; ande;; are deviatoric
18, 2000; final revision, June 14, 2000. Associate Technical Editor: M.-J. Pinder&omponents of stress and strain tensors given by

Journal of Applied Mechanics Copyright © 2001 by ASME JANUARY 2001, Vol. 68 / 129



with the shear modulugt= uou(x) and the bulk moduluk
Si= 0T 30k, &)= €T 3 €l @ KoK (x) provided that the transformed viscoelastic variables are

whereu; are displacements;; is the Kronecker deltay(x,t) and associated with the corresponding elastic variables agpf (p)
K(x,t) are appropriate relaxation functions,is time, and the andKopg(p) are associated with, andK,, respectively. There-
Latin indices have the range 1, 2, 3 with repeated indices implyifi@re, thecorrespondence principlé& homogeneous viscoelasticity
the summation convention. Note that the relaxation functions alaI holds for the FGM with the material properties given in Eg.

depend on spatial posiions, whereas in homogeneous wiscoelg - 1 Laplace ransformed nonomogeneous viscoclasti
ticity, they are only functions of time, i.epu=u(t) and K Y

=K(t) ([12]) sponding nonhomogeneous elastic problem by replagiggnd
For a bouﬁdary value problem, the boundary conditions alfe With #opf(p) and Kopg(p), respectively. The final solution is

given by realized upon inverting the transformed solution

oijn=S, onB,, (®) 4 Some Models for Graded Viscoelastic Materials

ui=4;, on By, (6) Among the various models for graded viscoelastic materials are
wheren; are the components of the unit outward normal to thihie standard linear soliddefined by

boundary of the body$, are the tractions prescribed &;., and
A; are the prescribed displacements Bp. The parts of the ,u(x,t)=,ux(x)+[ue(x)—ux(x)]ex;{—

_t
tu(x)

boundaryB, andB,, are required to remain constant with time. (16)
t
. K(X,1) =K, (X)+[Ka(X) =K, (X)]exg — ——/|,
3 Correspondence Principle (0 (0 +[Kelx) (] % ti(x)
In general, the correspondence principle of homogeneous vike power-law model
coelasticity may not hold for FGMs. To circumvent this problem, t.(x)]9 te(x)]0
we consider a class of FGMs in which the relaxation function _ I3 _ K
X, 1) = me(X , K(x,1)=Kg(X , 0<qg<1,
have the following general form: O = prelX) t (D =Ke(x) t } q
a7

106t = o (0 (1),
K(x,)=KoK(x)g(t),

(7)  and theMaxwell material

t
. Kx,t)= Ke(x)ex;{ - tK(_x)

t
where uq andK, are material constants, ang(x), K(x), f(t), “(X't):“e(x)ex% £,(%)
andg(t) are nondimensional functions. The constitutive [@yis

then reduced to wheret ,(x) andtk(x) are the relaxation times in shear and bulk

- t de; moduli, respectively, and is a material constant. The discussion
Sij=2mom(X) | f(t—7) 5 —d7, below indicates the revisions needed in the general models so that
0 (8) the correspondence principle holds.

tg(t, 7 ddE:de' + Standard Linear Solid16). If the relaxation timeg , andty

are constant, ifug(x) and u..(x) have the same functional form,
) o and if K¢(x) andK,(x) have the same functional form, then the
By assuming the material initially at rest, the Laplace transformgandard linear solid satisfies assumptign

of the basic Eqs(), (2), (8), and the boundary conditiort§) and . power Law Model17). It is seen that if the relaxation times

(6) are obtained as t, andt, are independent of spatial position, then the assumption

o =0, 9 (7) is readily satisfied. Moreover, even if the relaxation times
" depend on the spatial position {@7), the correspondence prin-

Ukk:3KOR(X) fo

-1 _ _ ciple may still be applied with some revision, which consists of
fij:§(ui,J+Uj,i)v (10) taking the corresponding nonhomogeneous elastic material with
- _ the following properties:
i = 24as(MPTR)S; ) =m0 (010 K=K 0[t(01%  (19)
Tkk=3KoK(X)Pg(P) €k (12)  instead ofu=pe(X) andK =Kq(x).
- _a » Maxwell Material (18). If the relaxation timeg, andty are
7ijN; _S“’ on By, (13) independent of spatial position, the assumpt(@hﬂis promptly
u=4,, on B, (14) satisfied.
where a bar over a variable represents its Laplace transform, and . .
p is the transform variable. Thus T Thermoviscoelastic Problem
- " The basic equations of thermoviscoelasticity of FGMs are iden-
;” f i exp(—pt)dt, ?” f &; exp(—pt)dt, tical to those of viscoelasticity except the constitutive law. The
0 0 constitutive relation for thermoviscoelastic FGMs is given by
. o o o t de|j
ui=| uexp—ptdt, f(p)=| f(t)exp—pt)dt, (15) Sij=2 /.L(X.t_T)FdT,
0 0 0 (20)
— - ! dl ég— a(x)T]
g(p)= | g(t)exp—pt)dt. o=3 | Kxt=7) —————dr,
0 0

It is seen that the set of Eq§)—(12), and conditiong13) and whereT is the temperature and(x) is the coefficient of thermal
(14) have a form identical to those of nonhomogeneous elasticigxpansion. Herer is assumed to be time-independent. By apply-
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ing the Laplace transform to the above equation and adopting theThe integral of the term within parentheses(#¥) is the so-

form of the relaxation functions given ifY), we obtain called C* integral (e.g.,[15]) which is valid for homogeneous
— ~ - — ~ — - — viscous materials undergoing steady-state creep. The extra term in
Sij=2mon(¥)PT(P)eij,  Ti=3KK(X)PY(P) (€~ aT), (24), which appears outside the parentheses, is due to the modulus

_ o _ variation. Equation(24) can be seen as an extension of &
while the constitutive relation of the nonhomogeneous thejntegral for nonhomogeneous viscous media. Theintegral is a
moelasticity may be expressed as 3 special case of th&,-integral derived by SchapefiL6] by means

§;=2u0u(X)€;,  Ta=3KoK(X)(e— aT). (22) of correspondence principle arguments. The latter integral ac-

. . ) counts for a wide range of time-dependent material behavior, and
Thus it can be seen that the correspondence principle still holdgq|,des viscous creep as special case.

6 A Path-Independent Integral

The J-integral ([13]) has been extended to certain classes of )
elastic materials with varying Young’s modulus in the crack-lind A Simple Example

direction by Honein and Herrmanfi4]. Here, aJ-like path-  As an example of application, we consider an infinite strip of
independent integral is presented for characterizing fracture viiidth h occupying the region €x;<h, —o<x,<®, —w<X,
nonhomogeneous viscous materials. <. Itis assumed that the strip deforms in the-x, plane under

Consider the shear modulus with the specific functional formthe plane-strain conditions. A “fixed grip” loading condition is
_ considered, i.e.e;(X;,*=®)=¢€y, Wheree, is a constant. The
P(X1%2,1) = pro(Xo) EXHBX) (1) (23) nonvanishing stress,, in a nonhomogeneous elastic material
where uo(X,) is an arbitrary function ok, and g is an arbitrary with the Young’s modulu€=E(x;) and the Poisson’s ratio
material constant. Note th&23) has the form given iri7). More- = uw,(x,) is given by([4])
over, the Poisson’s ratio is assumed to be independext.ofhe

proposed integral to characterize crack growth in such graded ma- Ee(X1)€o _ 4€ope(X)[3Ke(Xy) + pe(X1)] (26)
terial undergoing creep is 21— 12(xq) 3Ko(Xq) + 4 e(Xy) '
: au; , i i :
c: :J (Wnl_gijnjﬁl> -~ ggijnjui ds (24) where the following relations are used:
i ' 9K epte 3Ke—2pte
wherel" is a contour enclosing the crack tip; is the first com- Ee:gKeJrMe' Ve™ 2(3Ko+ o) @7)

ponent of the unit outward normal 1§ oy;n;=S; are the compo- _ o
nents of tractions alongj, ds is an infinitesimal length element According to the correspondence principle, the Laplace transform

along the contouF, andW is the stress work ratgowen density c_Jf the stress_in a visc_oelastic FGM with the shearing and _dilata-
tional relaxation functionge = uo(x1) f(t) andK=Ky(x1)g(t) is

defined as ;
) given by
- €kl . — — Yy
w= fo oijdei (25) — _Aeope(x)f(P)[3Ke(x1)9(p) + pe(x0) f(P)]
022~ (28)

. . . L . 3Ke(X)g(P) + 4 ue(Xy)f
The integral(24) has been obtained by replacing strain with strain e(X)Q(P) + Ane(x)T(P)
rates, and displacement with displacement rates in the correspodr the Maxwell materia(18) with constant relaxation times,
ing Je-integral ([14]) for nonhomogeneous elastic materials. andty , the above transformed stress becomes

— [4eopelx)/(p+ U, II3K(x0)/(p+ 1) + palx)/(p+ 11,
e 3K (x)/(p+ 1) + Ape(x)) (p+11,) '

(29)

By inverting (29), we get the stress in the time domain as followsand g(p) are the Laplace transforms &{t) and g(t), respec-
tively, andp is the transform variable. The final nonhomogeneous
9Ke(x1) exp{ _ Ape(x)t, Mt 3Ke(xg) T viscoelastic solution is realized by inverting the transformed solu-
Ape(Xq) +3Ke(Xy) Aun(X1) +3Ke(x1) tion. Equivalently, if the creep functionk (x,t) andJ,(x,t) have

022

¢ separable forms in space and time, then the correspondence prin-
+ex;{ - t_) ] me(X1) €o. (30) ciple (as employed hejds also directly applicable.
»
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Elastic solids with holes under remote tension are reconsidere
When hole dimensions are shrunk so that holes disappear, anor
lies occur in the classical elasticity solutions of LanBy intro-
ducing cohesive laws on hole surfaces as they shrink, the
anomalies may be removedDOI: 10.1115/1.1331285

1 The Issue

Sketched in Fig. 1 is the Lamgroblem of an infinite elastic
plate, weakened by a circular hole of radimisunder a uniform
remote tensionry. In cylindrical polar coordinateéFig. 1), the
stresses in its classical solution are given in Lditleand are

o, - a?
delg

I3
for asr<o, 0<6<27w. The companion shear stress componei
is zero by virtue of the axisymmetry of the configuration. Ths

Elastic plate

1Swain [5], pp. 121,122, does note a similar anomalous result in the classic
elasticity solution for an infinite plate with a circular hold underiaxial far-field
tension.
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Division, Mar. 27, 2000; final revision, Aug. 8, 2000. Associate Technical Editor: J.
R. Barber. Fig. 1 Plate with hole under remote tension
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of &, atr=0_betweeno, and 27, as the imperfection’s stressfor a<r <c, 0= <2, whereinO is the dilation,u is the shear

concentratiorf. This unsatisfactory situation is compounded bynodulus and is 3— 4w for plane strain, (3- v)/(1+ ») for plane

the ambiguity of which stress component or o, is what in the = stress,» being Poisson’s ratio; the cohesive stress-separation law

limit as a— 0 for differentd. All told, such physical explanations on the hole boundary,

are quite superficial. Here, then, we seek to furnish a physically

sensible resolution of the differences between [anselutions or=k(2u,+2a-4) at r=a, ®)

for plates with holes and responses for whole plates. for 0=< @< 2, whereink is the law stiffness and is the equilib-
rium separation of the atoms or molecules comprising the plate;
and the condition applying the tension at infinity,

2 A Resolution o,=0p as r—m, (6)

e o ovpimns g 0= 2. In adion rom ou cohesive-aw patch tes a
. . =R, we haveo,=k[u,(r=R+ §/2)—u,(r=R—6/2)], leading

of any hole must start to interact with each other as the hotlg r

closes. This interaction produceshesive stressesn the hole

walls. Here we model the action of these cohesive stresses. k=4ul8(k—1). (7)
There are three key elements in our simple models. First, we ) )

introduce cohesive stresses via cohesive stress-separation laws g is the value of the stiffness to be used(8 whena is

hole boundaries. This simplifies the incorporation of the underlpufficiently small.

ing solid-state physics and reduces the analysis of our models tdS0lution of the problem i13)—(6) is elementary and gives

involving just continuum mechanics. Such an approach was first 2 2

introduced in Barenblaf6] and has seen extensive use siffia- {‘TV] = UO[ _J a ool (k— 1)+20(')i , (8

clair [7] provides a recent bibliographyFor the most part, it has r

been employed in the analysis of cracks, although LE8)9] here

treats a rigid inclusion without a crack. The implementation of

cohesive stress-separation laws here could be viewed as the dual ) 2u(2a—8)+(k+1)opa

of their use in Levy(8,9]. 0p=00— 2 (u+ka) . (9)
Second, we only consider that portion of the cohesive stress- K

separation law near the equilibrium position. That is, we onl@bserve that8) and(9) recover Lam&s solution (1) whenk=0,

track the action of cohesive stresses when the hole is extremalythey should.

small. In this range, cohesive stress-separation laws can be takeNow consider what happens if the hole disappears. Introducing

as linear. Moreover, the constant of proportionality can be backgaht (7) into (9), and takinga— /2 to close the hole, gives;,

out by insisting that the insertion of such a cohesive law withia- o, Thus from(8),

the continuum without any hole leaves response there

unaltered—a kind of cohesive-law patch test. For the present o, =0y=0y as a— /2. (10)

problem, this insertion is actually carried out on a circular ring %

’ _
ooz, W=

Ty + r Au

radiusR in an elastic plate with the same moduli as the origin quation(10) is the physically sensible result for a plate without a

plate. Then such a patch test in effect accounts for the action of L . . .
the atoms external t® on all those internal, and vice versa. A similar reformulation and analysis for the spherical hole
Again, simplification is the intent. The so-simplified treatmen'?rObIem leads to
does nonetheless serve to demonstrate the basic physics involved. o _ ad
Third, we take our cohesive stress-separation law as acting be- [ r} = 00{ n 1/2] o7, (11)
tween the centers of the atoms or molecules comprising the hole r
surfaces: By symmetry, these atoms or molecules are diameighere
cally opposed. The consequence of this assumption is that holes
close when their radii reduce to half of the equilibrium center-to- . 4p(2a—=0)+3(k—1)opa
center spacing of the atoms or molecules. This removes any am- o= 00~ 2(2u+ka) '
biguity associated witla— 0. ) ) o, o
The corresponding reformulation of Lafseproblem for the With « being as for plane stress. Again Laseolution is recov-
plate with a hole then is as follows. Throughout the plate of Fig. @red wherk=0, and a state of uniform all-round tension obtains
whena is Sma”, we seek the axisymmetric p|anar Streﬁps whena— 6/2 prO\_/Idedk IS _taken so that it passes the cohesive-
oy, and their companion displacement, as functions of, sat- law patch test in spherical polar coordinatek=@u/d(3x

isfying the following requirements: the stress equation of equilib=5))- . .
rium in the absence of body forces, Implicit in both the circular and spherical hole problems treated

here is the existence of a length scale which is considerably larger
than the initial radii, and which remains fixed as radii go to zero.
This additional length scale can be made explicit by instead con-
gidering an annular plate and a hollow ball. The same anomalies
homogeneous and isotropic, linear elastic solid, result when internal holes are shrunk to zero: They can be rem-
edied by a parallel introduction of cohesive laws.
It is also possible to adapt the foregoing if one actually wanted
{‘TrJ — O=u. +rtu (4) to model an imperfection. Then the fact that material on opposite
as H ' o n sides of the holes had once been separated can be reflected in the
choice of the cohesive law as material gets back together if indeed
2If insteadr is not fixed in terms of1 before taking the limia—0, then a state of there is some impediment which modifies this law. To be truly
all-round tension obtainesee(1)). This is a different limit, however, since under it physically appropriate, this choice needs to be founded in solid-

one is moving to infinity rather than to the center of the hole. _ state physics. Such an analysis is beyond the scope of the present
Insertion of an entire, nonlinear, cohesive, stress-separation law is tracta

within linear elasticity because the present problems are one-dimensional. It is not " . . . . .

appropriate, though, because the large strains incurred near the peak stresses [ sum, the boundary conditions in Lamelassical solutions

cohesive laws really require a finite strain analysis. for elastic solids with holes are not physically appropriate when

Ty

12)

roy +o,—0s=0, )

for a<r<, 0=<6<2; the stress-displacement relations for

S—Ke 2 U r
k—1 * r’lu,
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Thermal Stresses,by Naotake Noda, Richard B. HetnarskiMy impression is that this chapter will appear very indigestible to
and Yoshinobu Tanigawa. Lastran Corporation, Rochestany student without a previous grounding in linear elasticity.

NY, 2000. 455 pages. Price: $70.00. Apart from a single worked example, the derivations are presented
without a break and without much indication of how the material
REVIEWED BY J. R. BARBER ! will be used. Of course, these equations will later be reduced to

) simpler forms for specific examples and it would obviously be
There are several excellent books on the subject of thermagtficient to derive them separately in each case. However, the
stresses, including the classical texts by Boley and Weinghstryctor will probably find it necessary to supplement the mate-
Nowacki, and Nowinski, but none of them is entirely sa_tlsfactorMa| in this chapter with more examples, if only to allow the stu-
for classroom use because they make few concessions to a5 time to catch their collective breath during the ascent.
reader and in particular do not include worked examples and endSimilar criticisms could be leveled at later chapters in the book,
of chapter problemsThermal Stresseby Noda, Hetnarski, and \here the general results are specialized to two-dimensional

Tanigawa aims to .fiII this gap. It starts from the most elementa_ ane problems(Chapter 5, problems for the cylindefChapter
concepts of one-dimensional thermal expansion and stress, wi nd the sphereéChapter“i and for thin platesChapter 8

most students will have encountered in a first course in Mechan st of these chapters conta{in only one or two text examplés and
of Materials. Problems and methods of gradually increasing COWese are concentrated near the beginning of the chapters. It is as

plexity are then introduced, each being illustrated by several t%%ugh the authors gradually forgot their stated mission in the

examples and supported by suitable student assignments. : : " " "
The first two chapters cover linear thermoelasticity of onem'ddllteigftfuaec?hg:arg;er:’ '2]9\#:?';(:6? dz]ﬁc;?(;ﬁghin nghoér\g ntter
dimensional bars and Euler beams, respectively, with various temg' y P

perature distributions and mechanical loading conditions. The fuﬂr_esent essen_na_lly a general solu'uon_for a class_ of probléns
damental concepts are reinforced by the discussion of a wi éamp'e.’ a built-in rectangulz_ir plate with a prescnbeq temperature
range of applications including composite and inhomogeneo itribution, so that the solution of a particular technical problem

beams. Although the concepts involved in these applications d¥@uld merely involve the substitution of one or more given func-

straightforward, the solutions can involve rather formidable loo#loNS @nd the evaluation of some integrals. However, in my expe-

ing algebra, which may lead the less insightful student to overlod|ENce: these particular examples provide crucial motivation to
the essential simplicity of the underlying concepts. | was al udents, particularly th°$e with a more practlcal engineering per-
disappointed to see no reference to elastic-plastic problems in (RECtVE. They also provide an opportunity to the author and the
section, since thermally induced residual stresses are an impor{2afructor to draw important technical conclusions. For example,
branch of the subject and these one-dimensional examples proJigd Pig & temperature variation in the body might be sufficient to
a convenient vehicle for their introduction to the student at sjgnerate dangerously large thermal stresses in various practical
elementary level. engineering components? Where does the maximum stress occur
Chapter 3 introduces the heat conduction equation and therr@@fl What is the physical character of the deformed shape of the
boundary conditions. Problems in one dimension are solved fi dy? . .
by separated variable methods, leading to series solutions, an&hapter 9 generalizes the theory of beam-columns to include
then by Laplace transform methods. This methodology is firthermal effects and .the final Chapter 10 d!scusses thermoelasncny
introduced in Cartesian coordinates and then extended to off@M the perspective of thermodynamics. In particular, the
dimensional problems in cylindrical and spherical coordinates. coupled heat conduction equation is derived from thermodynamic
Chapter 4 presents an overview of the complete deve|0pmemq9|nsnderat|ons anq the student is also mtroducepl to variational
the general equations of linear thermoelasticity, starting with eqdileorems, the uniqueness theorem and the reciprocal theorem.
librium and coordinate transformation of stress components, tRverall, the technical and mathematical level of the material
definition of strain components, compatibility, and statements 8takes this book most suitable for a first year graduate level
the governing equations in terms of stress or displacement. T¢Urse, though the more mathematically talented senior under-
particular solution of these equations is defined in terms of tfggaduates may also be able to assimilate it with appropriate guid-
thermoelastic displacement potential, and the Papkovitch-Neul§éce. _ _ _ _
solution is introduced as the homogeneous solution, using sepaEngineering designers routinely make use of “everyday intu-
rated variable solutions of the Laplace equation in Cartesian dgon” to identify structurally sound methods of transmitting
ordinates. Appropriate results are then repeated in the cylindrigalrely mechanical loads, but the effects of thermal loading are
and spherical coordinate systems. The chapter ends with a disdtigch harder to predict without detailed analysis. Also, what ap-
sion of the importance of multiply connected bodies in theear to be relatively modest temperature variations can cause se-
moelastic problems and a derivation of the Cesaro line integraligus states of stress. There is therefore an excellent case for a
greater representation of thermal stresses in engineering degree
Professor of Mechanical Engineering and Applied Mechanics, University &urricula and the authors are to be complimented on providing us
Michigan, Ann Arbor, M| 48109-2125. Mem. ASME with a suitable text for this purpose.
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